データ・アナリティクス入門

仮説で切り拓く未来の発見

仮説の意義は何? ビジネスにおける仮説とは、ある論点に対する仮の答えを意味します。重要なのは、正しい答えに決め打ちせず、複数の仮説を挙げることで網羅性を確保することです。仮説には「結論の仮説」と「問題解決の仮説」があり、時間軸によって過去の検証と未来の予測で内容が変わります。 仮説をどう検証する? 問題解決の仮説は、問題解決のプロセスに沿って、WHATからWHERE、WHY、HOWへと各要素に仮説を立てるものです。このアプローチにより、検証マインドが向上し、問題意識や改善点への気づきが促進されるという利点があります。 仮説は広く捉える? ゲイルを通して学んだのは、正しい答えに近づけようと意識するあまり、仮説の範囲が狭くなってしまう可能性があるという点です。思いつくままに仮説を列挙してみることで、仮説の網羅性や全体像が明らかになることを実感しました。また、数値を用いた費用対効果の分析手法も学ぶことができ、有用な気づきとなりました。 売上の原因を探る? 具体的な例として、売上分析においては、単価が低いことやコストが上回っていること、あるいは季節性の変動によって患者数が左右されるなど、さまざまな仮説が考えられます。これらの仮説は、結論の仮説として売上未達の要因を示すものと、問題解決のプロセスとして原因究明のための仮説として整理することが求められます。 仮説報告はどう? 毎週の売上数値進捗報告では、複数の仮説を設定し、その検証結果と合わせて報告することで、仮説立案のプロセスに説得力を持たせることが大切だと感じました。月末には、立てた仮説を通して得た気づきを言語化し、次のステップに活かす姿勢が必要です。

マーケティング入門

市場を掘り起こす新発見と戦略

ポジショニングはどう? 「誰に売るか?」という問いに対する答えをどのように構築するかを学びました。ポジショニングによって、特定のニーズを持つ消費者に刺さる商品を生み出し、埋もれていた市場を掘り起こすことができるというのは新たな発見でした。また、同じ商品であってもコンテクストが変わることで、新たな価値を新たなターゲットに提案することができるという点も大きな学びでした。多くの最新技術が軍事目的から生まれたことがありますが、使用シーンを変えることで、生活の利便性を高めたり課題を解決したりする技術に変わることも一例と考えられます。しかし、ポジショニングとターゲティングの違いについてはまだ自分の中で明確に理解できていない部分がありました。 セグメントの再検証は? 編成プランを考える際にはまず、ユーザーをどのような軸でセグメンテーションするか考え直す必要があります。性別や年齢といったセグメントが本当にコンテンツ消費に合っているのかを再検証したいと思います。その上で、各セグメントをターゲティングできる企画を持っているのか確認してみたいと考えています。加えて、韓国ドラマコンテンツがなぜこれほどヒットするのか、その消費者の正確な属性(年齢や性別以外の要因)を分析し、韓国ドラマファン層をどう取り込むかについて考えてみたいです。 実行ステップは? 具体的には、志向性でのセグメントが可能かエンジニアや戦略チームに相談したり、消費者インサイト調査チームと協力して志向性別に調査が可能かを検討します。そして、ポジショニングマップを作成し、業界での自社のポジションを把握するとともに、消費者から見た自社のポジションを確認することを目指します。

クリティカルシンキング入門

視点が変える!課題解決のヒント

分析切り口はどこ? まずは、何を求めたいのか、またそのためにどんなデータをどういう切り口で分解するかを明確に整理することが大切です。具体的な切り口をいくつか試すことで、問題が可視化され、思いがけない発見や気付きが得られると感じます。また、会議で使用する資料も、今までの内容をそのまま繰り返すのではなく、新たな視点や切り口を取り入れる提案をしていきたいと考えています。 入院現状はどうなっている? 次に、高齢者を対象とする長期療養病院では、入院期間が短くなっているために収入が減少している現状があります。コロナ以前は、入院期間が1〜2年に及ぶケースが多かったのですが、現在は短期入院の後、一人暮らしの自宅に戻るケースが増え、独居高齢者や老老介護の現状が見受けられます。こうした背景をいくつもの理由から分解して整理し、どの層にどのようなニーズがあるのかを早急に把握し、対応策を検討する必要があります。そのため、入院患者の年齢、病名、入院期間などで患者構成を分け、「入院期間別のニーズ」として分析することが、違った側面からの理解につながると考えられます。高齢化が進む中、独居高齢者や老老介護で自宅療養を選択する方々へのアプローチを見直すとともに、そもそも当院の長期療養というカテゴリー自体が適切なのかを検討し、入院・退院患者のデータを根拠に多角的な課題の洗い出しを進めることが急務です。 実践支援はどんな風に? また、少人数の部署で自分一人で学んで実践しようとすると、他のメンバーがどのように感じるかという懸念があります。学んだ知識を円滑に実践するための、効果的な声掛けやサポートのヒントについても、アドバイスをいただけると助かります。

アカウンティング入門

大局でひも解く財務の魅力

B/Sの全体像はどう? これまで、あまり重点的に学んでこなかったB/S(バランスシート)について、資産・負債、固定・流動、そして純資産(利益剰余金を含む)の大枠から考察し、その後、各要素の割合や経営方針・安定性について分析する方法を学びました。以前は、B/Sを見ると細部に気を取られ、大局を把握しづらいと感じることが多かったですが、全体構造を押さえることの重要性を再認識できました。 財務諸表はどう比較? また、総合演習では、実際の企業のP/L(損益計算書)とB/Sを用いて比較検討を行いました。例えば、あるサービス提供企業同士では、価値提供の内容の違いからP/Lの構造が異なり、どこにコストがかかっているかを比較することで、各企業の経営戦略や事業モデルの違いを具体的に理解することができました。さらに、ある伝統的な重厚長大産業と、比較的新しい分野の企業とのB/Sの違いを分析することで、それぞれの経営上の特性が浮き彫りになりました。 戦略の未来はどう? 今後は、所属する会社やそのグループ内の各社とでビジネスモデルが異なる特徴を踏まえ、PLとBSの構造の違いを比較検討しながら、提供する価値について自ら論じられる力を養いたいと考えています。経営戦略、事業戦略、技術戦略の策定には、財務分析をより具体的な提言に繋げる役割があるため、各企業の有価証券報告書やネット上の情報、さらには生成AIを活用して、継続的に財務分析に取り組んでいく予定です。加えて、財務諸表と経営戦略については多様な考え方が存在すると認識しており、今後はその点についても自由なディスカッションを行うことで、学びをより実践的な知見へと昇華させていきたいです。

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

戦略思考入門

現実を知り、未来を描く学び

規模の経済ってどう考える? 「規模の経済性」という言葉は知っているものの、自社の状況に合わせて具体的に説明するのは難しく、正しい理解が必要だと感じました。生産量を増やすことで必ずしもコストが下がるわけではなく、需要、設備能力、在庫管理、資金繰りなど、さまざまな制約条件を考慮しなければならないと分かりました。また、原材料を大量に発注してコスト削減を狙っても、市場環境や仕入先の状況によっては効果が限定される場合があり、単に数量を増やすだけでは交渉力に繋がらないことも理解しました。 戦略原理は実践できてる? さらに、戦略の原理やフレームワークは知識として持つだけでは不十分で、数字やデータ、自社の実情に照らして活用することが重要だと感じました。自社の商品やサービスの理解を深め、業務フローや収益構造を把握することで、提案や意思決定の説得力が向上することにも気付かされました。 生成AIの変化はどう捉える? また、生成AIの登場により、従来の開発者が習熟していく過程が変わりつつある現状もあり、この変化は「習熟効果」が技術革新によって無効化される例ともいえ、イノベーションが既存の競争原理を覆す瞬間だと感じました。 多領域スキルはどう磨く? このような状況に対する打開策として、単一の専門スキルに依存するのではなく、複数の領域にまたがる知識や経験を横断的に活用できる体制を築くことが有効だと考えます。具体的には、開発者としてのコーディング能力だけでなく、要件定義、UX設計、ビジネスモデルの構築、データ分析など、隣接する領域のスキルを組み合わせることで、AIツールを前提にした新たな付加価値の創出が期待できると感じました。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

データ・アナリティクス入門

データ分析で経営に革命を起こす方法

標準偏差をどう理解したか? データを分析する際に使用する数値(平均値、中央値、標準偏差)について、特に標準偏差については名前を聞いたことがあってもよく理解していなかったが、今回の学習でよく理解できた。2SDルールを使うと、大体の平均値が分かることも印象的だった。また幾何平均についても学べてよかった。恥ずかしながら、これまで売上の成長率をデータを目で見た大体の数で算出していたため、売上予測を立てるのに幾何平均が大いに役立つと実感した。調べたところ、エクセルでは標準偏差はSTDEV.P関数、幾何平均はGEOMEAN関数を使うと算出できるようだ。 より的確な売上予測を立てるには? まず、目標設定のために売上予測を立てること。また、各製品のポテンシャル予測にも活用できそうだ。さらに、自社サイト会員数の分布を散布図を使って確認することができると思った。ニッチな業界のためこれまで分布を確認したことがなかったが、年齢や勤務地等でデータを分析してみると面白そうだ。 各製品の成長率を比較する方法は? 次に、扱う製品と市場の性質上、月毎の売上に大きなばらつきがあるため、年ごとにまとめるのでは効果的な数字が得られないと考える。そのため、各製品の月毎の売上を、過去の3-4年と比較することで成長率や今後の伸び率が確認できそうだ。また、例えば月1以上ログインしている会員の年齢を5年くらいごとに区切ってヒストグラムに示す、あるいは企画ごとに図式化することで、どの企画がどの年代に刺さっているのかが分かりそうだ。 有用なデータ分析を期待するには? これらの手法を取り入れることで、より具体的で有用なデータ分析ができると期待している。

クリティカルシンキング入門

考え方の枠を広げる、クリティカルシンキングの重要性

自己分析の重要性をどう捉える? ライブ授業内の演習で例題が提示された際、最初の自分の考えから他の視点を考えることが難しく、他の方の回答を聞くと「ああ、そんな答えもあったのか」と思うことが多いです。この経験を通じて、自分の考えが制約に縛られがちで、考えやすい方向に流れてしまっていることを認識しました。 批判的思考の新たな発見とは? 論理的思考力とはロジカルシンキングだと思っていましたが、それだけでは足りず、批判的思考(クリティカルシンキング)も伴っていないと、状況の認知や分析につながらないということを初めて知り、学ぶことができました。また、偏りなく考えるためには、「まず考えてみる」をやめて、「どうやって考えるか」を考えた上で考え始めるということが大事だということも学びました。これまで、「どうやって考えるか」を意識したことがなかったため、今後の学習を通して意識していきたいと思います。 効果的な課題分析を目指すには? 具体的には、課題に対する分析や報告をする際、状況の分析が不十分なまま偏った内容で報告してしまうことがあり、手戻りが発生することが多いです。この経験から、本当の課題は何かを一度立ち止まって考えてから、分析や報告書の作成を進めたいと思います。 打ち合わせを有効にする方法は? また、打ち合わせの時には、表面上の話しか追えておらず、その場で意見を言えるまで考えが至っていないことがあります。今後は、何のために打ち合わせをしているのか、出てきた意見に偏りがないかを考えながら臨みたいと思います。 このように、今後の学習や実務で「どうやって考えるか」を意識し、論理的かつ批判的な思考を養っていきたいです。

アカウンティング入門

BSで読み解く企業の健康診断

BSの基本は何? BS(貸借対照表)の理解により、期末時点の企業の健康状態を客観的に把握する意義を再確認しました。例えば、筋肉や骨が資産に、贅肉が負債と捉えられるように、BSは資産と負債のバランスを視覚的に示していると感じました。左側が資金の使い方、右側が資金の調達方法となり、両者が一致する点で「バランスシート」と呼ばれる理由が理解できました。 現金化と借入はどうなる? また、BSは現金化に近い順に資産が配列され、損益計算書(PL)の当期純利益がBSの純資産における利益剰余金として反映される点も重要です。借入金は必ずしもマイナス要素ではなく、事業計画に基づいた投資として有意義である一方、利息や返済計画への配慮が必要であることも学びました。 シミュレーションでどう変化? 実践的な視点として、予算策定時に3カ年のPLおよびBSの変化を予測すること、PLに加えてBSの観点から事業の変化を3パターンシミュレーションすること、さらに自社だけでなく複数の企業のBSを分析し対比することで、より具体的な知見を得る方法が提案されています。これにより、単なる数字の動きを超えて、企業全体の財務状況と戦略的な視点が養われると感じました。 分析結果は信頼できる? 実際に、借入が事業の成長に寄与するケースもあれば、無借金経営を標榜する企業が倒産に至るケースもあり、BSの分析は市況や自社の能力など多くの要因を複合的に考慮しなければならないことを痛感しました。私自身、部門担当としてPLを中心に扱っているため、一般的な財務担当者がどのようにBSを活用しているのか、今後さらに学び、実務に生かしていきたいと思います。

データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right