クリティカルシンキング入門

課題解決力を高める3つの「視」の実践

イシューの立て方とは? WEEK1からWEEK5までの総合演習を2つ実践しました。これにより、課題(イシュー)に対する問いの立て方や共有方法を再復習することができました。しかし、分析や視点の切り口についてはまだ習慣化されていない部分があり、今後も努力を続ける必要があります。 チームでの課題共有をどう進める? 日々、様々な問い合わせや連絡が発生する中で、相手の求めている課題(イシュー)を明確にすることを部署内で共有していきます。インプットとアウトプットを繰り返すことで、これを習慣化し、チーム全体の課題解決力向上に繋げていきたいと考えています。 3つの「視」をどう活かす? また、3つの「視」を意識することが重要だと感じました。 1. **視点**:個人としての課題を考えるための着眼点や注目点。 2. **視野**:周囲を意識した広範囲の課題を考える。 3. **視座**:上司としての立場から課題を考える視点。 これらを日々実践し、課題解決能力を身に付けていきたいと思います。

データ・アナリティクス入門

ロジックツリーでプレゼン企画が大変身!

MECEの重要性は何か? 頭の中だけで何となくMECEになっていると思っても、実際には抜け漏れがあることが結構あると感じました。ロジックツリーを使うことで、他者にも伝えやすくなり、指摘をもらう際にも感覚ではなく論理的な議論になりやすくなる点は非常に有効だと思います。 プレゼント企画にどう活かす? 特にプレゼント企画などは使用する機会が多く、担当者それぞれのアイデアを取捨選択しながら決めることが多かったですが、ロジックツリーを活用すれば、その場限りのアイデアだけに頼らずに決定するフローを作成できます。その結果、蓄積・分析も容易になるでしょう。 企画立案での活用とは? 次回の企画立案時には、ロジックツリーをたたき台として作成し、提案することで、メンバー全員がロジカルに議論を進められるようにしたいと考えています。また、MECEの考え方を自身の視点として忘れないようにするとともに、メンバーの企画や提案に対するフィードバック項目の一つとして、全員で意識できるように努めたいと思います。

データ・アナリティクス入門

条件そろえてわかる分析の極意

分析の基本って何? 「分析は比較なり」と「分析条件は揃える(apples to apples)」という考え方を、改めて言語化し再認識する機会となりました。分析の目的を明確にすることの大切さを改めて感じ、普段当たり前に使っている言葉やアクションが、人に説明する際に十分に簡潔な言葉で表現できていなかった点に気づくことができました。 分かりやすい伝え方は? この気づきのおかげで、自分が実際に行動する際や他者に伝えるときに、より明確で分かりやすい表現を心がけるようになりました。また、分析やデータ収集設計に取り組む際は、比較のための軸が整っているか、条件が一致しているかをしっかり確認することが必要だと感じました。 設計と準備はどう整う? たとえば、データ収集設計を行う中で、ユーザー単位なのかセッション単位なのかといった視点を明確にすることが重要です。こうした点について、どのような設計や準備が効果的か、皆さんと意見を交わしながらさらなる検討を進めていきたいと考えています。

データ・アナリティクス入門

目的設定で切り拓く未来

分析ってどう進める? 分析とは、物事を要素ごとに分解して比較することだと考えています。データ分析のプロセスを学んだことで、物事の見方がクリアになり、目的を明確に意識した上で作業を進める大切さを実感しました。分析終了後にどのような状態を目指すのかを具体的に思い描いてから、データの収集や加工に取りかかることで、効率的により良い結論へたどり着きやすくなりました。 目的はどう変わる? また、既存の実績と計画の対比資料については、目的を見直すことで、その後の行動につながる資料に改善できると考えています。新たな課題に対しても、目的をしっかり意識することで、より適切な判断へと結びつけたいと思います。 目的共有で安心? 資料作成に入る前には、まず目的の設定と仮説の作成を十分に検討するため、「データ分析のプロセス」を印刷し、常に見える場所に貼っておくようにしています。自分が資料を作る際のみならず、他の人に作成を依頼する際にも、目的をしっかり共有する説明を心がけ、全体の質向上に努めています。

アカウンティング入門

数字から読み解く経営の流儀

数字が語る真実は? 実在企業のP/LやB/Sを分析することで、単なる数字の羅列ではなく、人間の活動の流れを読み解く感覚を得ることができ、大変刺激的でした。その中でも、健全な負債が存在するという点は、事業のスケールアップに欠かせない要素であると強く印象に残りました。 数値把握の難しさは? これまで新規事業の立ち上げに携わる中で、事業領域ごとの適正な数値が把握できず、良くも悪くも過度な投資をしてしまったり、逆に必要な投資が不足していたりした経験があります。今回、成功事例と失敗事例を改めて振り返り、学びを深めたいと考えています。 現状理解のポイントは? また、まずは自社や同業他社の現状をしっかりと理解することが重要だと思います。私たちの会社は複数の業態にまたがる事業を展開しており、各事業部ごとにP/Lの数値が大きく異なるため、会社全体としてのB/Sも非常に複雑になっているはずです。身近な事から一歩ずつ学んでいくことで、より実践的な知識の獲得を目指していきたいです。

リーダーシップ・キャリアビジョン入門

環境を味方にするリーダー術

リーダーシップを発揮するには? リーダーシップを最大限に発揮するためには、環境要因と適合要因をしっかりと見極め、それに合わせた適切な対応を取ることが重要であると理解しました。これまでの自分の行動を振り返ると、そこまで繊細に考えて行動することがあまりなかったと感じます。 事業部長としての挑戦 現在、私は事業部長として会社の方針を実際のビジネスに具体的に実現するための企画を担当しています。日々の業務では多くの判断が求められる場面が存在します。そのためには、部下や他部門に対しても環境要因と適合要因をしっかりと見極め、チームおよび会社の方向性を一致させながら、事業の成果を最大化したいと考えています。 判断の精度を上げるには? そのためにまず、すべての案件に対して環境要因と適合要因を分析し、その分析をもとに判断を行っていきます。また、判断の精度を向上させるために、いくつかの案件については部下や同僚に判断に至った分析を説明し、第三者的な意見を求めてPDCAサイクルを回していきます。

クリティカルシンキング入門

相手に伝わる思考整理の術

結論から伝える理由は? 今週の学習を通じて得た最も印象深い教訓は、「相手に伝える際は結論から述べること」と「その根拠となる理由を柱として分類し、相手に合わせて具体的に提示すること」です。これまでを振り返ると、私は思いついたことを整理せずにバラバラと伝えていたことが多かったと感じました。 マーケ戦略はどう組み立て? 新規事業のマーケティング戦略を考える際、市場分析や顧客の課題を整理して結論を導くために、まず結論を述べ、その根拠となる理由を明確にすることに努めたいと思います。そして、さらにこれらの具体例を分解し、自分自身の考えも整理しながら、相手に伝わるように組み立てて話すことを徹底します。 アイデア整理のコツは? まずは、思いついたことを羅列してみることから始めます。具体的な内容が多い場合は、分類しまとめていくプロセスを大切にしたいです。全体像を俯瞰して見るために柱を組み立てることにも注力し、時間がかかっても頭の使い方に慣れるよう意識を高めていきたいと考えています。

データ・アナリティクス入門

データを読む力で広がる新視点

数字の壁は本当? データ分析に関して、「数字が得意でないとできない」という思い込みがありましたが、実際にはデータの読解力が重要だと感じました。データと情報を比較することで状況を把握しやすくしたり、意思決定をしやすくする手法の一つとして、どのような目的や仮説で分析を行うのかが最も重要な根幹部分であることに気づきました。 旅行動向はどう? 具体的な例として、訪日旅行観光客の市場動向と顧客行動の把握があります。どの国からの訪日観光客が増えているか、減っているか、滞在日数、1人当たりの消費額、訪問都市やその数、そして訪日旅行に求めていることや課題について分析しました。 立ち位置はどう評価? 会社が策定している中期経営計画の目標達成のためには、訪日旅行という分野において、自社が業界内でどのような立ち位置や状態になるべきかを明確にする必要があります。そして、その状態を達成するために必要となる情報やデータを考慮し、どのような戦略を打ち出すべきなのかについて検討することが求められます。

データ・アナリティクス入門

業務効率化のカギはデータ分析と説得力!

日々の意思決定は? 業務で日常的に行っている意思決定も、「分析」の結果であるということに気づいた。また、より早く、より良い意思決定を行うためには、「データ」の性質を理解し、効果的な比較を行い、他者が納得しやすいようにグラフ等を使用する必要があることを学んだ。 なぜ運用を変えるのか? 業務効率化を進めるため、新しい運用を推進することが日常的にある。その際、従来のやり方を変えたくないメンバーも多いが、以下のプロセスを踏むことで業務効率化をスムーズに進められるようになると思う。 まず、なぜ運用を変更した方がいいのかをしっかり分析する。そして、反対メンバーが理解し納得しやすいように、グラフ等も活用しながら分析結果を提示する。 学んだ内容をどう活かす? まずはWEEK6までの学習の中で、「分析手法」「データの性質」「それぞれのグラフの特徴」をしっかり自分の身につける。そして、WEEK6までで学んだ内容をすぐに実践に取り入れ、上司やメンバーを巻き込み、業務効率化を達成していく。

データ・アナリティクス入門

仮説が照らす新たな一歩

結論と解決をどう見極める? 仮説には、論点に対する一時的な答えとしての「結論の仮説」と、具体的な問題解決を推進する「問題解決の仮説」があるという考え方があります。複数の切り口から仮説を立て、そこから焦点を絞っていくことで、決め打ちせず柔軟に検証を進めることができます。 仮説と検証はどう活かす? このアプローチにより、検証マインドや説得力、問題意識が自然と向上し、分析のスピードおよび行動の精度が高まると感じています。たとえば、営業活動の最適化を図る際には、既存のデータから読み取れる情報に加え、どのようなデータがあれば反論を排除できるかを考慮した仮説を設定し、必要なデータを収集することが重要です。 BI導入で何を学ぶ? また、BIツールを活用した経営ダッシュボードを作成する際は、単に事実を表示するだけでなく、社員が仮説を立て行動につなげられるよう設計する工夫が求められます。納得してもらえる仮説の立て方を学ぶことが、効果的な分析や営業活動の最適化に直結すると実感しています。

データ・アナリティクス入門

検証が導く次の一手

結果の背景は何? PDCAサイクルにおける「C(Check)」の重要性を改めて実感しました。業務では、A/Bテストの結果が出るとすぐに「採用」と「不採用」の判断に偏りがちですが、なぜその結果になったのかという背景や要因の検証が不足していると、本質的な成果や再現性のある改善につながりません。 結果だけで大丈夫? 自身の業務においても、施策実施後に結果だけを見て結論を出す傾向がありました。しかし、今後は仮説とのずれや背景要因を丁寧に分析し、再現性のある改善策を立てる必要性を感じています。 検証で進化できる? そこで、施策の実施後は必ず検証の時間を確保し、PDCAサイクルの「C(チェック)」を強化することを行動計画に盛り込みます。具体的には、仮説と結果の差異を可視化し、原因分析のためのデータを事前に収集・整理する仕組みを整え、定期的な振り返りの場で結果の背景を多角的に検証します。これにより、直感や思いつきに頼らず、根拠ある意思決定を進めていきたいと考えています。

データ・アナリティクス入門

データが映す問題解決の一歩

データ分析前の課題は? データ分析を始める前に、まず何が問題なのかを明確にし、その問題がどこで発生しているのかを確認することが重要です。分析の基本は分解にあり、目的に応じて様々な視点で切り分ける際、階層の違いに注意する必要があります。たとえば、where、why、howの順序を意識することで、基本に立ち返ることができます。 検証方法はどうする? 実際の業務においては、前月の業績(予実差)を基に問題を設定し、どこから問題が生じているのかを調べます。その際、自分の感覚だけではなく、データ上で本当にそう言えるかをしっかりと検証することが求められます。結果を先入観として捉えず、データに基づいた事実を導き出す姿勢が大切です。 振り返りの進め方は? 毎月の業績振り返りでは、改めて何が問題なのかを定め、具体的な発生箇所を探るプロセスを実践します。このプロセスを通じて、自身の直感が正しいかどうかをデータを用いて検証し、結果ありきでデータを選び出さないことを意識することが求められます。

「分析」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right