クリティカルシンキング入門

新発見!分解で見える本質

イシューの意味は? 「イシュー」とは、今ここで問い直すべき核心の問題を意味し、これまで学んだ分解やロジックツリーの考え方を活用できることを実感しました。その上、手順を踏んで伝える言語化や視覚的に示す方法との連動が重要であると認識しました。 事例から何を学ぶ? ファストフード店の事例では、客の立場では実感していたものの、経営者の視点から内外環境に応じたイシューの抽出やそれに基づく施策の検討が難しく感じられました。特に、売上の分解において、平日と休日、ハンバーガーとサイド、若者とシニアといった切り口は、自分の発想にはなかったため、新たな気づきを得ることができました。 売上戦略はどう練る? この考え方は、自身が担当する売上拡大策にも活用できそうです。売上を分解し、点数や単価、カテゴリーなど、どの切り口や問題があるのかを明確にした上で、適切な打ち手を講じていくことが必要だと感じています。また、取引先の食品小売店の売上に対しても、数字の内訳をしっかりと把握し、的確な施策を提案することが求められるでしょう。 日々のスキル向上は? 分解のスキルや経験が必要だと実感しているため、日常のニュース(決算関連やキャンペーンなど)の背景を分解・整理することを意識しています。さらに、社内や取引先への売上確認や報告が月次単位で行われることから、定期的にOutlookのスケジュールにリマインダー(毎月25日朝8時)を設定するなど、日々の業務で経験値を積む計画です。 理論の実践はどうなる? 「分解(階層、変数、プロセス)、ロジックツリー(インパクトの大きいものから)、MECE(漏れやダブりなく)」といった考え方を常に意識し、業務改善に努めていきたいと考えています。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

戦略思考入門

真似されず輝く自社の魅力

講座受講の本当の意味は? 今回の講座を受講する理由は、経営戦略の学びが自身の業務にも深く関係している点です。特に、顧客にとって価値があり、選ばれるための差別化が重要な視点だと感じています。 差別化の本質は何? これまで「差別化をしたい、考えたい」とよく思っていましたが、具体的に深掘りする方法が分からず、また「真似されるな」と主張していたものの、真似されるものはそもそも差別化とは呼べないと気付きました。加えて、差別化を実現するにあたり自社の強みを意識する中で、真似できないソフト面が今の組織の大きな強みであると認識し、これを大切にしていきたいと考えています。 VRIOを活かす秘訣は? また、VRIOの考え方が非常にわかりやすかったため、さっそく現業務に活用したいと思います。自分の事業内容の見直しの際に、特に情報配信やイベントでの差別化の方向性を模索していたため、学んだ内容が具体的なヒントとなります。さらに、女性対象に情報配信や起業家支援を行う事業でも、企画から実施、告知、集客に至る各段階で役立つと感じました。 集客はどう取り戻す? 近年、SNSの台頭などで仕事の依頼が減少し、売上が低下しているため、改めてフレームワークを活用し、独自のサービスを打ち出す必要性を感じています。そこで、まずスタッフミーティングで集客に関する概要を伝え、各自に「なぜ集客が必要か、どのような手段が考えられるか」を宿題として考えてもらいます。 実践後に何を考える? その後、スタッフ全員で実際のワークを行い、まとめた内容を可視化して、とりあえず実践に移します。実践した後は反省点を振り返り、改善に努める予定です。具体的なテーマとしては、夏休みイベントを取り上げています。

戦略思考入門

フレームワークで視野を広げる学びの旅

差別化の学びは何? 差別化を考える際に特に印象に残った学びを紹介します。 フレームワークは何で? まず、フレームワークを用いることの重要性を挙げます。マクロからミクロまでの広い視野で細かく分析するには、フレームワークが欠かせません。フレームワークを使用することで、見落としを防ぎ、思考のバイアスを取り除き、新たな気づきを得ることができます。 顧客視点はどう? 次に、顧客視点で考えることの重要性です。競合が行っていないことに目を向けがちですが、顧客が喜ぶような差別化をしなければ成功しません。顧客のニーズを何度も考え抜く粘り強さが必要です。 模倣防止は可能? さらに、他社に模倣されない施策を講じることが求められます。すぐに模倣されてしまう施策は、あっという間にコモディティ化してしまい意味がありません。自社独自かつ模倣が困難で、長期的な継続が可能な施策を打ち出すことが重要です。 過去とどう向き合う? バックオフィスにおいては、競合との差別化ではなく、自分たちの過去との差別化を考える必要があります。業務効率や業務品質、過去のクレームなどを分析して課題や実績を洗い出します。顧客から直接ニーズを得たり、現状のリソースから実現可能な施策を考えたりします。そして、その実現に向け、皆で話し合いながら意思決定を行い、実施内容を検討します。集合知の活用が鍵となります。 実践はどう進める? 具体的な実践例としては、業務上フレームワークを使う機会が少ない場合でも、適切な場面では必ずフレームワークを活用し、自己の視座を広げる努力をします。また、同じ部署の仲間を競合と捉え、自分にしかできないことで自身を差別化することも一つの方法です。

リーダーシップ・キャリアビジョン入門

自分に余裕、対話で花咲く

エンパワメントの真意は? エンパワメントのコツについて学びました。まず、自分自身が余裕を持って取り組むことと、相手をよく理解することが重要であると感じました。ただし、すべての仕事にエンパワメントが通用するわけではなく、手に余る仕事や不確実性が高い業務、そして一度の失敗が許されない仕事には注意が必要です。 目標設定の工夫は? また、目標設定の場面では、相手に自ら考えさせ、その意見を引き出す方法が大切だと学びました。その際、相手が「分からなくて」やる気がないのか、「できなくて」やる気がないのか、あるいは最初から「やりたくない」のかを見極めることがポイントです。もし相手が困惑して「やりたくない」と感じている場合は、やる気が湧くような伝え方を工夫し、意味を分かりやすく伝える必要があります。 余裕の大切さは? 私が一番心に響いたのは、「自分自身に余裕をもって」という考えです。余裕がある状態では、相手の話をゆっくりと聞くことができ、たとえピント外れの回答であっても受け入れて、適切にアドバイスや補正を行えると感じました。一方で、余裕がない場合には感情的になりやすいため、対話に臨む前に自分自身の状態を見極めることが大事だと思いました。 目標と組織はどう連携? 今後、目標設定の際には、相手の話をよりよく聞くように努めます。そして、自分で判断するのではなく、相手に「分からないのか、できないのか、やる気がないのか」を考えさせるように意識します。さらに、相手の目標と組織の目標を結びつけ、広い視野でやる気を促すために、6W1Hを意識した定量化ができる目標設定を行い、フォローアップの頻度も増やしながら、寄り添う姿勢で接していきたいと思います。

データ・アナリティクス入門

統計で読み解く学びの軌跡

代表値の意味は何? データを理解するためには、代表値と散らばりに注目することが大切だと学びました。代表値については、これまで単純平均や中央値が中心だと思っていましたが、加重平均(重みづけを行う)や幾何平均(売上成長率の計算などに用いる)もあることを知りました。 散らばりの特徴は? また、データの散らばりを把握するためには標準偏差が有効です。標準偏差の値が大きいほどデータのばらつきが大きいことが示され、散らばりをグラフにすると中央が高い釣り鐘型になるのが一般的です。大部分の値は標準偏差の2倍以内に収まるとされ、これを2SDルールと呼びます。この考え方は、日本人男性の平均身長とそのばらつきを求める具体例で非常に分かりやすかったです。 業務で活かすポイントは? 業務面では、意識調査で入社年次のデータが取得できた際に、標準偏差を使ってデータのばらつきを確認してみたいと考えています。社内教育の理解度確認にも、標準偏差が有用であると思いました。 他部署での応用は? さらに、別部署で実施している顧客アンケートの分析においても、今回学んだ知識が応用できそうです。たとえば、寄せられた意見をカテゴライズして、売上に応じた加重平均を算出することで優先すべき意見を抽出できると感じました。また、幾何平均を用いることで、翌年度の予測も立てられるのではないかと考えています。 今後の展開はどう? 今後、6月末に予定している社内教育のアンケート分析では、理解度の散らばりを明らかにするために標準偏差を調べるつもりです。そして、業務分担の変更が見込まれる中で、顧客アンケートの分析にも加重平均や幾何平均を活用し、前年度データとの比較検証を行う予定です。

デザイン思考入門

デザイン思考で顧客価値を最大化する方法

デザイン思考をどう活かす? デザイン思考には、共感、課題設定、発想、試作、テストのステップがあり、これを非線形に繰り返すことが重要だと学びました。この思考をビジネスに活かすためには、顧客やユーザーの行動を観察し、彼らの体験価値を最大化することが大切です。最近学んだカスタマージャーニーでも、ペルソナを細かく設定することが、サービスやプロダクト、戦略を考える上で重要だとされており、これがデザイン思考と通じると感じました。 学びを深めるステップは? 学びにおいて大切なこととして、1.言語化、2.教訓化、3.自分化が挙げられ、これが特に印象に残りました。私は考えを言葉にするのが苦手なので、まず書いてみて、次に発言し、さらに伝わりやすくするステップを踏んでいければ良いと思っています。 システム開発の目的を再確認 現在、私は営業系のシステムを開発・管理・運用する部署に所属しており、社内の営業部門がメインの顧客です。これまで、ITやシステムに慣れていないユーザーをターゲットに、使いやすさを重視した設計を行ってきました。しかし、講義を通じて、システム開発の本来の目的は効率化や売上向上を図ることにあると考え直しました。ターゲット設定を見直し、本来の目的達成のための設計をもっと重視すべきかもしれないと感じました。 顧客理解に基づく設計とは? システム開発においては、インターフェイスの使いやすさに過度に拘らず、データの意味を可視化し、顧客理解や戦略策定を実現するための設計に焦点を当てる必要があります。既存のシステムについても、ユーザー目線でその利用価値を最大化できるかを考え、ユーザーからのフィードバックを積極的に取り入れる姿勢が大切です。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

デザイン思考入門

共感×問題定義で挑む成長術

共感はどう活かす? デザイン思考の5ステップを学ぶことで、全体の流れが体系的に理解できました。特に「共感」と「問題定義」の重要性が印象に残り、表面的な言葉だけでなく相手の背景や感情をくみ取って本質的な課題に迫るアプローチを再認識することができました。日々の業務において、現場の方の話を丁寧に聞く大切さを改めて実感する良い機会となりました。また、プロトタイプやテストを通じて改善を図る考え方も、提案活動に活かせると感じています。 現場の実感は何? 私の業務では、社内の各部門で発生する業務課題や非効率な業務フローのヒアリングを行い、データやデジタルの力を活用して改善提案をしています。今回の学びで得た「共感」「問題定義」「発想」「試作」「検証」の流れは、実際の現場支援プロセスに即していると感じました。特に、現場の方が本当に困っている点を深掘りする「共感」と、課題を的確に把握し整理する「問題定義」のステップは、今後のヒアリングや提案活動において意識していきたいポイントです。自分の仕事をより意味のあるものへと昇華させるヒントを得ることができました。 未来の改善はどう? 今後のヒアリング業務では、相手の状況や感情に寄り添い「共感」をしっかりと行い、話の中に潜むニーズや課題の背景を深く理解することを意識します。そして、「問題定義」の段階で課題を整理し、関係者と共通認識を持つことに注力します。必要に応じて、可視化やプロトタイプのアイディア出しも行い、改善の方向性を早期に示す工夫を取り入れます。小さな実践でも「試してみる」「やってみる」姿勢を大切にし、相手と共に課題を乗り越えていくパートナーとして活動していくことが今後の目標です。

クリティカルシンキング入門

データを解剖して見えた営業の新展開

数字の活用法は? 数字を味方にするためには、分解して解像度を上げることが重要です。数字をうまく利用することで、問題箇所を特定しやすくなります。迷った時には、とにかく手を動かすことが肝心です。 データ加工の工夫は? まず、数字の加工に関しては、与えられたデータをそのまま使用するのではなく、自分で追加の欄を設ける工夫が必要です。仮説を持ち、どの単位で分解すると有益かを考えることがポイントです。 切り口はどう考える? 数字を分解する際の留意点としては、切り口をMECE(Mutually Exclusive, Collectively Exhaustive)で考えることが挙げられます。一つの傾向が見えても複数の切り口で他に傾向がないか探すことが重要です。傾向が見えなくても、それはそれで意味があります。 強みと弱みは? 営業成績の振り返りにおいては、担当者の強みや弱みを把握すること、代理店内の強みや弱みも同様に把握することが肝要です。また、品質に関しても同様に、担当者や代理店の強みと弱みを理解することが求められます。 業務分担と数値は? 業務適正化には、月間スケジュールと週間スケジュールの策定、および業務の分担が含まれます。さらに、営業成績の振り返りでは、まずは活用していた数字が正しかったかの確認から始め、決まった期間で得られる数値を把握し、分解する項目を決定。そして、その項目をルーティンで確認することが重要です。 品質分析はどう? 品質の振り返りにおいては、定められた数値に対して新しい切り口を模索するために時間をかけることが求められます。業務適正化では、現状の分析と必要業務の確認が中心となります。

戦略思考入門

MBAで学んだ経済性の裏側を探る旅

規模の経済性とは? 企業活動における「規模の経済性」について、多く仕入れることで単価は下がるが、これが必ずしも適切な解決策とはならないことを理解しました。生産数が増えることで固定費の比率は下がりますが、これは一定したリズムで生産できる場合に限った理論です。実際の企業活動では月ごとにバラツキが生じるため、自社の商品や生産体制を十分に把握した上で考慮する必要があります。特に固定費の利用法については、旧部署から人件費が先行するため、パラダイムシフトが必要だと感じました。 範囲の経済性は? さらに、「範囲の経済性」に関しては、シナジーという言葉で理解が進みました。動画で説明されていた多角化における固定費が増加するケースについて、似たような行動をしているので注意が必要です。社内の複数部署から業務を引き受けているため、業務に習熟するまでの期間が必要であり、これも範囲の経済性に関連すると感じています。 ネットワークも狙える? ネットワークの経済性を大規模なものではなく、ニッチなもので実現させることを目指しています。特に、今後後発でBPO事業に参入する予定であり、独自性の追求に努力を続けたいと思います。個人的には、現状では取り組んでいない領域でのチャレンジを実現するために動き出そうと考えています。 ビジネス法則を見直す? 最後に、ビジネスの法則についての学びを深める必要性を感じています。グループワークでも同様に感じたことですが、用語の意味を調べる機会が多く、先人の知識を十分に活用できていないと反省しています。今後は、MBA用語集を活用し、最低限知っておくべきことを優先的に習得していきたいと考えています。

「考え × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right