マーケティング入門

商品の魅力を引き出す振り返り文のコツ

複数の価値が生む魅力とは? 一つの価値だけでは魅力的に映らない商品も、複数の価値を組み合わせることで、他社商品よりも魅力的に感じられることがあります。こうした強みの組み合わせによって、差別化できる領域を見つけ出すことが重要です。 マーケティングの基礎を理解するには? マーケティングの基礎には「セグメンテーション」「ターゲティング」「ポジショニング」があります。セグメンテーションとは、人々を同じニーズや性質を持つ固まりに分けることです。これには、人口動態、地理的、心理的、行動的などの変数を用いて、商品特性に合わせて適切に分けることが求められます。 ターゲティングは、セグメンテーションで分けた集団の中から、具体的に標的とする固まりを選ぶプロセスです。市場規模、成長性、競合状況、優先順位、到達可能性、反応の測定可能性の6つの基準から評価します。これにより、経営資源を効果的に配分し、費用対効果を高めることができます。 自社製品の優位性をどう築く? ポジショニングでは、自社製品をターゲット顧客に好ましい形で認知してもらうための計画を立てます。ポジショニングマップを使用し、顧客ニーズに合わせた訴求ポイントを2つの軸により表現して、自社製品を優位な位置に置きます。これにより、製品の魅力を一目で理解させることが可能です。 広告施策を立案する際は、ターゲティング、セグメンテーション、ポジショニングを考慮し、マーケティングの方向性に沿った内容であることを確認します。プロモーションに当たっては、顧客の共感を得つつ、差別化できる訴求ポイントを意識することが大切です。 差別化が機能しない時は? 商品の差別化については、どのような競合が存在するか、そしてその商品がどのように競合との差別化を図るのかについて、ポジショニングマップを活用して考えることが求められます。ターゲティングやセグメンテーションがうまく機能しない場合は、商品の特徴、顧客のニーズ、利用シーンを見直し、戦略を改めて考える必要があります。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

標準偏差と仮説思考で業務改善を実感

標準偏差をどう使う? 分布やばらつきに気をつけることは、これまでの業務でも意識していましたが、標準偏差という形で数値化できる点は新しい発見でした。これまでグラフなどで傾向やトレンドを可視化する手法は行ってきましたが、標準偏差を用いて数値で比較することは新しい視点でした。これを身につけるために、現在の業務の実例に落とし込み、実践していきたいと考えています。 仮説思考をどう改善する? 仮説思考について、常に意識はしているものの、今週の学習を通じて、自分に仮説の引き出しが少ないことや、自分に都合の良い仮説を作りがちであることを実感しました。これらを改善する方法として、同じ事象を分析する際も常に2つ以上の仮説を立てることをマイルールとし、少なくとも当講座期間中は意識していきたいと考えています。 予測に役立つプロセスは? 四半期ごとの目標を追いかけている環境にあり、週次や月次での予約動向、今後の動向予測などに触れる中で、週次の動向分析時に数値が良い(または悪い)理由を考える際には、Week2で学んだWhat,Where,Why,Howのプロセスを踏んで複数の仮説を持つことを意識していきます。例えば、直近の予約動向が落ち込んだ場合には、「仮説1: 地震の影響」、「仮説2: 地震の影響ではないかも?」というように、あえて真逆の仮説も立ててみるなど、自分の経験や感覚に寄らない形での複数の仮説出しを行っていきたいです。 新しい視点をどう取り入れる? 以上の点を意識していく具体的な方法としては、以下の点があります。 - **複数の仮説出し**:同類の仮説のほか、あえて逆の仮説も立ててみる。 - **標準偏差の活用**:数値化の感覚がないため、これまでに利用してきた分布図などを用いて数値化するとどう見えるかを実践してみる。複数の事例で行い、数値の見え方を感覚的に掴み、実戦で利用できるようにする。 これらを日々の業務で実践し、新しい視点や考え方を自分のスキルとして取り入れていきたいと思います。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

マーケティング入門

体験で魅せるオンリーワンの価値

商品単体の差別化は? 商品単体では他社との差別化が難しく、関連する体験を通じた+αの価値が重要であると感じました。たとえば、購買検討や実際の利用前後の体験を丁寧にヒアリングや観察分析することで、ターゲットが求める価値の体験を正しく把握し提供することができると思います。 体験が結ぶ感情は? また、体験は感情と密接に結びついているため、体験をうまく設計すれば価格競争に巻き込まれず、他社との差別化に繋がると感じました。顧客がいつ、何によって、どのような喜びを感じるのかを具体的に設計することで、ポジティブな体験はお客さまとの接点を強化し、長期的な関係構築にも寄与すると考えています。 オンリーワンの秘訣は? 具体例として、お菓子ではなく「おやつ」として情緒的な付加価値を届けるといった発想から、自社のオンリーワンとなれる強みを検討する重要性を再認識しました。施策を通じ、商品やサービスの提供だけでなく、体験価値の設計を意識しながら、さらに深い顧客理解に基づいた価値提供を目指していきたいです。 DM施策はどう改善? 一方、現状のDM施策では、お客さまへの提供や体験を通じた購買促進の設計が不十分であると感じています。今後は、フォローアップ段階においても顧客にとって価値ある内容を検討し、より良い体験価値の提供につなげたいと思っています。 来場イベントの工夫は? また、来場型のイベントにおいては、企画・運営の中で人員や時間に追われ、十分な体験設計ができていない部分を改善する必要があります。今後は、優先順位を明確にし、どこまで詰めることができるかを考えながら進めていきたいです。 感情分析の重要性は? さらに、自社がオンリーワンと考える強みについて、顧客が実際に体験した際の感情や効果をより深く分析することの重要性を感じています。顧客の声が集まりやすい環境であるにもかかわらず、それを十分に活かしきれていないため、今後は顧客分析の優先度をさらに高める必要があると強く認識しました。

戦略思考入門

効率革命!ROIで賢く変わる現場

ROI重視の意義とは? 今回のケースを通じて、顧客アプローチの優先順位を決定する際、単に売上や利益額だけではなく、投資対効果(ROI)を重視する重要性を改めて学びました。特に、時間配分1%あたりの利益額という客観的な指標を利用することで、感覚に頼らず効率的な意思決定が可能になる点が非常に印象に残りました。ROIが低い顧客に対しては、勇気を持って切り捨てる判断を下すことが、戦略的な思考を促す大切な要素であると感じました。 標準化で何が変わる? また、業務の標準化がもたらすメリットについても学びました。たとえば、レシピや接客、清掃の手順を統一することで、どの店舗においても一貫したサービスと品質を実現し、顧客満足度を向上させることができます。さらに、仕込み・調理工程や在庫管理、新人教育の標準化により、作業効率が向上し、食品ロスや教育コストの削減にも寄与することが明確になりました。 リスク管理の要点は? 標準化は、HACCPに基づく衛生管理やクレーム対応、設備メンテナンスにも効果があり、食の安全性を確保しながらリスクマネジメントを強化する役割を果たします。その結果、非効率な業務を見極め、ROIの高い業務に注力するための客観的な判断材料として機能することがわかりました。これにより、企業全体の収益性向上にもつながると感じています。 品質維持の実践は? 具体的な行動としては、まず全店舗のレシピをデジタル化し、写真付きの標準調理手順書を作成することで、誰もが同じ品質の料理を提供できる体制を整えます。次に、接客マニュアルを動画コンテンツ化し、新人研修に取り入れることで、座学だけでなく実践的なスキルの習得を効率化します。衛生管理に関しては、清掃チェックリストと日報をアプリ化し、リアルタイムでの進捗確認と問題点の共有を実現するほか、主要食材の仕入れから提供までの温度管理基準を徹底し、抜き打ちのチェックを導入することで、食の安全性を確保する取り組みが重要だと学びました。

マーケティング入門

感情に響く価値の秘密

機能と体験の違いは? 商品には「機能的価値」と「経験的価値」があり、経験的価値を高めた商品は顧客の感情に訴えるため、リピーター獲得につながりやすいと学びました。経験的価値を重視した商品やサービスは、価格、ロケーション、パッケージ、空間などの組み合わせにより特徴づけることができ、差別化もしやすく、価格競争の回避にも寄与します。機能的価値だけでなく、商品の選択、開封、使用時における顧客の感情に着目した商品開発が重要であり、顧客目線のマーケティング活動の大切さを再認識しました。 体験のリスクは何? ただし、体験に重きを置く場合、商品のメリットとして価値を理解してもらいやすく、愛着が形成されやすい一方で、悪い点も目立ちやすく、飽きられるリスクがあるというデメリットも存在します。商品の価値を損なわないためには、顧客の声に敏感になり、競合の動向を把握・分析し、常に工夫と改善を続けることが不可欠だと感じました。 大学業界の変化は? 大学業界に目を向けると、大学は学部教育・研究活動だけでなく、課外活動やキャンパス環境、さらには就職サポートや学生カウンセリングといった生活支援など、さまざまな要素が複合的に絡み合っています。各大学は学部ごとに授業料を設定しており、その金額は類似学部を有する他大学の動向を踏まえて決められています。しかし、近年、特定地域の私立大学では奨学金制度の充実や検定料の割引措置などにより価格競争が激化している様子も見受けられます。そのため、授業料の安さだけで勝負するのではなく、オンリーワンの大学づくりが求められると感じます。 学びをどのように活かす? 今回の学びを自身の知識として定着させるため、日常的に利用しているモノやサービスを例に、機能的価値と経験的価値をさらに深く考察していこうと思います。特に、リピート利用している店舗やサービスにおいては、自身が心地よいと感じる要素がきっと存在するはずなので、丁寧に分析していきたいと考えています。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。

戦略思考入門

学びの視点を広げる経済性の理解

規模と範囲はどう違う? ■学び 「規模の経済性」と「範囲の経済性」について学びました。規模の経済性に関しては、初めは「大きければ良い」という認識がありましたが、実際にはコスト単価が上がることや、固定費や変動費を含めたより包括的な理解が必要であることに気づきました。 範囲の経済性については、複数の事業を運営することで経済性を高めることができるという概念は理解していたものの、「範囲の不経済」になる可能性も考慮しなければならないという新しい視点を得られました。その結果、範囲の経済性が競争優位性となるかどうかを十分に検討する重要性を認識しました。また、範囲の経済性を追求する場合、安易な多角化には注意が必要です。 業務効率は上がるの? ■規模の経済性を活かすために 業務の標準化と集約により、同じ業務を一つの部署やチームに集約することで、専門性を高め効率的な処理が可能になります。たとえば、経理業務や人事総務業務を一つの部門に集約し、共通のシステムやツールを導入することで、処理時間を短縮できます。 また、複数の部署で共通して利用できるツールを導入することで初期費用を分散し、学習コストを削減することが可能です。例として、クラウド型のグループウェアや会計ソフトを導入することで、情報共有を円滑にし、業務の可視化を図ることができます。 意見共有は役立つ? ■学びの復習と意見収集 学んだことを継続して活用するために、反復して経験することが重要です。具体的には、学んだフレームワークを用いて自分の会社や周辺環境に当てはめてみると良いでしょう。耳慣れない単語を調査し、一度口にしたりすることも有効です。頭を動かし、手を動かし、口を動かすことで学びを深めていきたいと思います。 さらに、自分が収集した情報をもとに徹底的に話し合い、意見を集めることで様々な発見があります。ナノ単科を共に学んだ同僚たちと意見を共有し合うことで、新たなシナジーを生み出すのも面白いと考えます。

マーケティング入門

魅せる工夫で価値再発見

マーケティングの基礎はどう? 今回の学習を通して、「何を売るか」「誰に売るか」「どう魅せるか」というマーケティングの基本要素を体系的に理解しました。単なる商品の提供ではなく、顧客の潜在ニーズを引き出し、価値ある体験を提供することが成功のカギであると再確認できました。 戦略の絞り込みは? また、ターゲットの絞り込みや差別化戦略の重要性、そしてペインポイントの解消による新たな価値創造の視点を得ることができました。実際の事例からは、体験価値を重視したアプローチが顧客の共感や支持を得る強力な手法であると学びました。 社員視点の改善は? さらに、今回の学びはバックオフィス業務にも応用できると感じました。社内業務の効率化や社員満足度向上を図る際、単にサポート業務として扱うのではなく、「顧客視点=社員視点」という観点から、社員がどのように感じ、どのように利便性が向上するかを意識する体験価値を考慮することが大切です。 業務工夫はどうする? 例えば、社内の申請フローを利用する人を意識してわかりやすく簡略化したり、社内イベントを体験価値として演出するなど、日常業務をより魅力的なものに変える工夫が考えられます。 業務効率を数値化? また、業務効率を数値化し、ペインポイントを明確にするためには、アンケートやヒアリングを通じて潜在ニーズを見極めることが有効です。現状の業務プロセスに対し、「誰のために、何を改善するか」という視点で再設計を行い、体験価値を高める工夫をすることの重要性を実感しました。 情報発信はどう魅せる? 情報発信においても、社内の情報共有や業務通知などは「どう魅せるか」を意識し、相手の立場に立った親しみやすいデザインと言葉選びを心がける必要があると感じました。そして、取り組み後には定期的なフィードバックを実施し、必要に応じた軌道修正を行うことで、PDCAサイクルを回し続け、継続的な改善を図ることができると学びました。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

「利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right