データ・アナリティクス入門

仮説とデータで見える未来

仮説思考はなぜ必要? 仮説思考の大切さを改めて実感しました。日々得られるファクトに対して「なぜ?」や「どうすれば良いか?」と疑問を持つ中で、あらかじめ仮説を設定することで業務上の疑問点や関心事に対し、より具体的なアプローチが可能となり、結果として業務の精度が上がると感じました。 データの活かし方は? また、データ収集においても、ただ数多くの情報を集めるのではなく、データの特性を十分に理解した上で、絞り込んだ活用を行う必要性を感じました。実績の分析に際しては、例えば「この時期だから売上が伸びないのか」や「この季節だから売り上げが良いのか」といった視点で、状況を整理することが有効でした。 記録の意義は? さらに、手元にあるデータやメモを活用し、気になった点や疑問点を記録しておくことは、仮説の検証や業務改善に直結する重要なプロセスであると感じました。日々その記録を見返しながら自問自答を繰り返すことで、自分なりの解を持ち、分析を重ねる姿勢が身に付いたと思います。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

データ分析の未来を対話で掘り下げる学び

データ分析の重要性を再考するには? 講座全体の学びを振り返ることで、データを分析してビジネスに活かすとはどういうことかを再考する良い機会となりました。基礎的な内容を再び学ぶことで、受講者がどの部分に関心を持っているのかを把握でき、自分の講座を作る際の参考になりました。 対話セッションのメリットとは? データ分析の講座を設計する際、受講者の理解を深めるための施策を考えました。その結果、受講者同士が対話を通じて学びを深めることが有用だと感じました。この対話セッションはどんなコンテンツにも適用できるため、今後自分が企画する講座にも組み入れたいと考えています。 持続的な知識吸収をどう行う? データ分析の知識を吸収し続けることは、今後も継続して取り組むべき課題です。自分の関わる案件でも、ビジネスにどうデータを活用できるかを常に検討していきます。また、受講者同士の対話型セッションを設計し、どのような項目でどのように深めていくかの具体的な内容を決める作業も続けていきます。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

データ・アナリティクス入門

数字が紡ぐ多角的な気づき

計算方法はどう違う? 他者による分析データでは幾何平均や標準偏差に触れる機会はありましたが、以前は計算式に苦手意識を感じていました。今回、単純平均や加重平均と併せて用いることで、データのばらつきや分布が視覚的に理解しやすいことを実感しました。また、分析結果同士の比較において要素が細分化され、読み解く幅が広がることも理解できました。普段目にするデータの背後には巧妙な仕組みが潜んでいることを再確認し、背景にある意図をより慎重に読み取ろうという意識が芽生えました。 部署ごとの傾向は? 担当しているダイバーシティ推進の取り組みでは、アンケート結果が全社的にポジティブな回答に偏る傾向が見受けられました。しかしながら、ネガティブな回答は特定の部署に偏っている可能性もあります。回答者の部署や性別などの属性に注目することで、異なる視点からの分析が可能になると感じました。こうした多角的な検証を通じ、部署ごとの業務特性やジェンダーバイアスなどの要因が明らかになることが期待されます。

データ・アナリティクス入門

数字が語る学びの秘話

代表値の使い方は? 代表値の計算方法として、単純平均、加重平均、幾何平均、中央値のアプローチがあることを再確認しました。日常の業務では状況に応じて使い分けているものの、特に幾何平均は実際に計算する経験がなく、大変勉強になりました。また、データのばらつきを捉えるための標準偏差を使った比較も初めて試み、今後の分析に役立てたいと感じました。 分析結果はどう活かす? 研修成績やサーベイ結果の推移やばらつきを把握し、傾向や特徴を見出すために、今回学んだ代表値の計算方法やビジュアライゼーションが非常に有効だと考えます。まずは、データを確認する前に、点数が上昇している場合と下降している場合の仮説を立て、その上で属性ごとに単純平均を用いて比較を行います。さらに、人事制度などとの関連付けを行う際には、特定の部署の比重を増やす加重平均や、前々回分のデータを反映した幾何平均を導入することで、目的に合った多角的なアプローチを実現し、仮説の検証や次の分析ステップへとつなげていきます。

戦略思考入門

戦略思考で未来を切り拓く

戦略思考ってなぜ大事? この6週間で、戦略的思考の重要性や難しさ、そして楽しさを学びました。まずはゴールを明確に定め、そのゴール達成のために何をすべきか、また何を避けるべきかを整理することの意義に気づかされました。さらに、戦略立案に役立つさまざまなフレームワークが存在することを実感し、有用な知識を得ることができました。 現地法人でどう活かす? 現地法人の営業責任者としての役割を担う中で、経営戦略や営業戦略の策定にあたり、今回学んだことを積極的に活用していきたいと考えています。業界が急速に変化する中で、常に外部環境をアップデートし、臨機応変に対応できる組織作りが求められています。 外部環境は更新できる? そこで、四半期ごとに3C分析やPEST分析を用いて外部環境を見直し、戦略の現状を把握しようと考えています。得られた分析結果から、自社のリソースや能力の不足している部分を補うために、担当部門や上司に適切に報告し、会社全体の改善へと繋げていく所存です。

アカウンティング入門

B/Sで読み解く実践戦略

資金配分をどう見る? 学んだ内容は、資金配分や事業への投資が売上成長に見合っているかを考察する上で非常に有益でした。企業の資産がどの程度有効活用されているか、また固定資産と純資産のバランスから安全性が判断できるという点に、意義を感じました。さらに、B/Sには経営者の将来に対する想いが表れていることを実感し、企業の実情を把握する重要な指標であると改めて認識しました。 同業比較で何が見える? 自社と同業他社のB/Sを比較することで、自社の良い点や改善すべき点を具体的に抽出できると感じています。今後は、これらの分析結果を基に、新たな事業戦略の検討や実効性のある改善策を模索していきたいと思います。決算書100本ノックを通じた学びは、その基礎固めに大いに役立ち、より実践的な視点で事業戦略を考える自信を与えてくれました。 学びをどう活かす? この学びを活かし、上司や関係者へのアウトプットを通じて、具体的な改善策や新規事業の提案に結びつけていければと感じています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

データ・アナリティクス入門

数字で読み解く成長の軌跡

定量分析の鍵は? サンクコスト、定量分析、MECE、ロジックツリーという手法について学びました。定量分析では、データのどこに注目し、どこを比較するかが重要であることが分かりました。特に、①インパクト、②ギャップ、③トレンド、④バラつき、⑤パターンの各視点からデータの意味合いを読み取ることに注力しました。 MECEの意味は? また、MECEに関しては「もれなく、ダブリなく」に分けるだけでなく、意味のある切り分け方が重要であることを理解しました。この考え方を基に、現状と理想のギャップを明確にし、具体的な行動につながる方向性をメンバーに示すことが求められると感じました。 課題解決の道は? さらに、現状の課題として、分析結果の共有時にメンバー間で理解のずれが生じたり、行動に直結しない点が挙げられます。なぜこのような分析が必要なのか、そこから得るべきものは何か、そして課題の解決につながる具体的な実施方法について、今後さらに明確にしていく必要があると感じました。

データ・アナリティクス入門

思考が変わる!分析への新挑戦

新たな視点って何? 短い期間ではありましたが、今まで知らなかった新たな視点と、分析の基礎的な部分に取り組む機会を得ることができました。この経験により、従来エクセルでグラフを作成することだけが分析だと思っていた意識を改める大切なきっかけにもなりました。 切り口をどう見る? また、改めて切り口や最終的に求める結果を明確に認識する重要性を実感しました。言われたことをこなすのは当然ですが、それだけでなく、どのような追加の分析が可能か、現在の活動がフレームワーク上で重複していないかを考えるようになりました。 未来の分析はどう? さらに、サイトなどを通じて他の場所での売り上げ分析の出し方を学び、今後自分が目指すべき方向性を掴む機会にもなりました。分析は過去のデータを用いることが一般的ですが、未来を見据える分野での活用を考える際、歴史上の革命と呼ばれるタイミングで起きた出来事を参考にすることで、役立つ知見を得られるのではないかという考えに至りました。

「分析 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right