クリティカルシンキング入門

振り返りから始まる新たな挑戦

思考力はどう育む? 知識のインプット、アウトプット、他者からのフィードバック、そして振り返りというサイクルが、成果に繋がる思考力を育む重要なプロセスであると改めて実感しました。普段の生活では意識的にクリティカルシンキングに取り組む動機付けが難しいですが、このトレーニングの繰り返しにより、当たり前のように思考結果をアウトプットできるようになりたいと思います。 修了は新たな出発? 本講座の修了はゴールではなく、むしろ新しいスタートラインに立ったと感じています。年間評価面談では、目標達成に至らなかったメンバーとも「イシューは何か」という視点で一緒に考え、今後の改善につなげたいと考えています。 問いはどう捉える? また、来期に向けては「問いを残す」ことと「問いの共有」を重視する予定です。組織として共通の「問い」を定めた後、課会で使用する資料の冒頭にテンプレートとして掲示し、毎回全員が確認できる仕組みづくりに取り組みます。 評価をどう見直す? まずは、自分自身の年間評価に対するイシューを検討します。強引に仮説を立て、必要なデータを集め、複数の切り口から結果を分析することで、来期には目標達成へ向けたしっかりとした下準備を整えていきます。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

リーダーシップ・キャリアビジョン入門

キャリア面談で活かせる新たな視点

モチベーションの違いを理解するには? モチベーションの源泉やスイッチは人それぞれ異なり、自分の経験や思い込みを押し付けても、必ずしも他の人のモチベーションアップにつながるとは限りません。特に印象的だったのは、講義のビデオで「自分のことも完全には把握できていないのだから、他人の心もわからない。分からないことを前提に接するべきだ」という言葉です。 新しいキャリア面談の挑戦 ちょうど今、部内でキャリア面談を実施していますが、この考え方は非常に役立つと感じました。例えば、部下から「どのようにキャリアプランを描くべきかわからない」という相談を受けた際、つい自分の経験を例に出して「自分の場合はこうだったので、あなたもこうしてみるのはどうか」といった話をしてしまいます。しかしこれでは、相手の悩みや希望を無視していることになります。そこで、まずは本人の言葉で悩みや考えを確認し、分析した上でキャリア面談を進めたいと考えました。 フィードバックを生かす方法 この新しいアプローチを、現在進行中のキャリア面談で試してみたいと思います。さらに、3月に予定している目標振り返り面談でも同様の方法を取り入れ、その際には前回の結果との違いを分析していきたいと考えています。

データ・アナリティクス入門

仮説と枠組みが切り拓く採用戦略

枠組みは何故有効? 仮説を立てる際、何もないところから考えるのではなく、3Cや4Pといったフレームワークに沿って整理することで、思考の構造が明確になりました。実際、これらの手法を用いることで、多角的な発想が生まれ、スピードや行動の精度が向上することを体感しました。 採用戦略、どう練る? 採用担当としては、仮説思考を3Cおよび4Pと組み合わせることで、効果的な採用戦略が練れると感じています。具体的には、3C分析ではカスタマー(候補者)、コンペティター(競合企業)、カンパニー(自社)の視点から状況を整理し、4Pの枠組みではProduct(採用ポジション)、Price(給与・待遇)、Place(勤務地・環境)、Promotion(採用広告・PR)を検討することで、各視点からの課題と仮説を明確にしています。 PDCAは効果的? また、こうした枠組みを基に、毎週のデータ集計時に採用課題に対する仮説を立て、各仮説に対する検証方法を決定してデータを収集しています。その後、得られた結果を分析し、打ち手を検討した上で採用戦略に反映。定期的に効果を測定し、PDCAサイクルを実践することで、常に戦略の精度を上げていくプロセスが整っていると感じました。

クリティカルシンキング入門

データ分析の新しい視点発見!

データ分析で新発見を得るには? データを分析する際には、さまざまな切り口から考え、実際に手を動かしてデータを加工することで、新たな発見が多くある。分解の粒度が大きい状態で導き出した結果を安易に結論としてしまうと、誤った判断を下す可能性がある。そのため、分解を行う前に全体を把握し、定義することが重要だ。 仮説をどう裏付ける? これまでデータを分解して分析することは多々あったが、全体を把握し、定義したうえでMECE(Mutually Exclusive, Collectively Exhaustive)な切り口で分解できていたかというと、必ずしもそうではなかった。また、自分が立てた仮説を裏付けることを目的として、恣意的に切り口を設定していたこともあった。まずは、オフィス内のスタッフごとの工数負担について、全体を把握したうえで分析したいと思う。 先入観を排除する方法は? 普段、自分が抱いているイメージという先入観をまず取り除き、工数実績などの数値から導かれた結果にフォーカスする。そのうえで、全体像を把握し、MECEを意識して切り口を決定する。具体的には、全員の残業時間も含めた総労働時間をもとに、業務ごとの工数を比率として算出してみたい。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

クリティカルシンキング入門

データ分析で学ぶ!実践で磨く思考力

結論は本当に正しい? データを扱う際には、まず計算して情報を加工し、複数の視点から分解し、得られた結論が本当に正しいかどうかを疑うことが重要だと学びました。表や数字を眺めて悩むよりも、実際に手を動かして考える方が効果的であると感じています。 調査結果をどう見る? これからは、マーケティング調査の結果を見て、どのようなニーズが存在するのかを理解するために使おうと思っています。これまでは、マーケティング部から提供された考察を読み、データに違和感がなければ納得していました。しかし、今後は得られたデータを自分で加工および分解し、その上で考察してみようと思います。そして、共有された考察が本当に正しいのかについても疑いの目を持つことを心がけたいと思っています。 自分で検証してみる? 今後、調査結果が共有された際には、自分でもデータを一度加工・分解してみるようにします。MECE(Mutually Exclusive, Collectively Exhaustive)を意識しつつ、まずは手を動かして、加工や分解に慣れることを目標とします。そして、得られた考察には常に疑問を持ち、自分の意見を形成したら、他の人にもそれを共有するように心がけます。

デザイン思考入門

顧客の声とデータが描く未来

顧客視点はどうですか? 自社サービスの継続利用のための課題設定に際して、定性分析の手法を用いることにしました。顧客からの意見とともに、顧客接点に立つ営業部門からの声も取り入れ、複数の視点から情報を収集しています。また、暗黙知にも着目し、背景にある顧客倫理や潜在的ニーズを明らかにすることを重視しました。 迅速な設定はどう? 当初、一から定性データを収集する案も検討しましたが、社内で声がけを行ったところ、既存のインタビューやアンケートが意外にも多く集まりました。今回、迅速に課題設定を進める必要があったため、既存の定性分析結果に加え、定量分析や営業組織からのヒアリング結果をもとに課題設定を行う予定です。 分析手法は信頼できる? 定性分析は、質そのものに着目して行うコーディング手法など、すでに学術的に信頼されている手法がいくつか存在します。これらの分析から導かれたデータをロジックやプロセスに基づいて構造化することで、仮説を見出すことが可能です。一方、定量分析は仮説を磨き上げることが目的ですが、定性分析は新たな仮説の発見を主眼としています。ユーザーが抱える課題を的確に特定するためには、具体的な視点からのアプローチが不可欠です。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

デザイン思考入門

本音に迫る新人研修の裏側

研修の成果はどこで感じる? 新人研修企画に向け、複数の社員に対してオープンエンドな質問を行い、今年1年の振り返りや研修会に対する印象など、豊富な定性的情報を引き出すことができました。中には「正直覚えていない」「配属されてからでないと分からない」といった回答もあり、知識のインプットは十分ながら実体験が伴わないため、研修がその場限りになっているという共通の課題が浮かび上がりました。 調査の難しさは何だろう? 一方、調査自体はまだ始まったばかりですが、対象者自身が気づかないような暗黙知にまで踏み込むのは非常に難しいと感じました。自身の仮説を提示し、それに対する意見は得られるものの、一歩踏み込んで本音の課題を引き出すためには、相手の領域やコミュニティに深く入り込む必要があると実感しました。 定性分析の説得力はどうする? また、定性分析はどうしても恣意的なまとめ方になりがちで、説得力に欠けるという懸念がありました。これに対して、定量分析で明らかになった結果は一般的すぎる面があるため、数値以外の情報を加えた上で、定性的な情報の根拠として定量データを補完的に用いることで、より説得力の高い分析が実現できるのではないかと考えるようになりました。

戦略思考入門

学びを生かす!戦略的成長への道筋

学習で気づいた課題は? 今週の学習を通じて、顧客視点にフォーカスしすぎて議論が不足していた自分に気づきました。フレームワークを活用し、広い視野で整理・検討することで、整合性の取れた方針を定めることの重要性を学びました。また、限られた資源をどこに優先的に配分するかを考えることも重要です。 3年後の売上目標に向けて 私の部署では、3年後に大きな売上目標が掲げられています。その達成に向けて今提供している商品やサービスをどう進化させるか考えていますが、現在市場のトップで走るも、今のままでは大きな売上拡大は難しいと感じています。そこで、今回学んだフレームワークを活用し、現状を分析したうえで戦略を練り、部署内での議論がより深まるよう努めたいと考えています。 新規事業に求められる戦略は? 私は新規事業領域に取り組んでおり、いかに打席に立つ機会を増やすかに重点を置いています。求められているのは確度の高い戦略を多く創出することです。そのために、PESTで環境を整理し、3Cで顧客や市場の動向を分析、SWOTで自社の強みを明確にし、戦略を多数出します。そして、分析結果と整合性のある方法を優先順位をつけて選び出す方法で進めていきたいと考えています。

クリティカルシンキング入門

問題解決の鍵を握る問いの磨き方

どんな問いから始める? 問いは何かということからスタートする重要性を学びました。どのような問いに答えるために分析を行うのか、その目的を確認することから始める必要があると感じました。この際、問いの妥当性を確認するために、MECEになっているか、視座・視点・視野に偏りがないかなどのポイントを自分でチェックすることが重要だと考えました。 なぜギャップが生じる? 現状の業務における課題としては、私の担当する台湾・香港エリアでの販売台数の低下に起因する過剰在庫問題があります。目指すべき目的は、不動在庫の消化および在庫レベルの適正化ですが、販売が思うように進まず、指標に対してギャップが生じています。このギャップを埋めるために、なぜ現状のギャップが発生しているのかを分析する必要があります。具体的には、カテゴリや客先別に切り分けて、予測と実績のギャップを把握し、それを要因別に分けて考えるという手順を踏みます。 何のためにデータを集める? データ収集については、その前に何のためにデータが必要であるかをしっかり考えてから行動に移します。そして、分析を行った結果をチームや販売拠点の営業メンバーに共有し、具体的な対策を検討することが重要です。

「分析 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right