クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

クリティカルシンキング入門

議論が脱線しないための会議術の極意

イシューを明確にするには? イシューを把握し、貫くことの重要性に気付かされました。自分が思っていた以上に、議論が脱線し、本来の目的とは異なる方向でリソースを費やしていたことに気付いたのです。 その防止策として、以下の点が挙げられます: 1. **本当の問いを明示すること**。 2. **その問いに対して的確に問うているか確認すること**。 3. **チームの場合、相手の問いが本当の問いかどうか見極めること**。 どのように会議を改善する? これらを実践することで、案内文章、企画提案書、共有資料、会議など多くの場面で効果を発揮します。特に会議では、議論の中で「何を言っているのだろう?」と思うことが多く、チーム内でイシューが共有されていないことが原因だと感じました。裏を返せば、イシューを明確にセットしてから会議に入ることで、これを防止できると考えています。 今後、現状把握と問題発見、課題設定の機会が増える中で、脱線せずに何を問われているのか、何を問うているのかを意識していきます。次回からは、この会議の目的やイシューを提示してから参加・実施し、その変化を確認してみる予定です。さらに、思索メモのトップに目的やイシューを記載することも心掛けます。 どんなフレームを構築すべき? また、今期から上司のスタイルを模倣して整理していますが、もう少し成長の実感が欲しいところです。イシューに立ち返るフレームを構築し、課題の真因発見に繋げていきたいと考えています。

データ・アナリティクス入門

実験と観察で見つける自分の一歩

検証方法の違いは? 過去の学習では、「データをつくって検証するアプローチ」(実験科学的)と「データを取得して検証するアプローチ」(社会科学的)の二種類に整理していました。しかし、デジタル領域の発展により、社会科学的なアプローチにも実験科学的手法が導入可能となり、ABテストが実施できるようになりました。いずれの方法も最終的な目的は「最善の行動をとること」であり、状況に応じて観測による検証と実験による検証の有効なステージを意識することが重要です。 現場での検証は? 現状の業務では、実験による仮説検証が難しいケースが多いですが、人事分野ではトライアルとして人事制度の導入が行われることがあります。また、業務改善ツールの試験導入時に導入群と非導入群に分けることで、ABテストのような検証手法が活用される可能性もあります。一方、ある情報発信においては、2通りの作成が現実的な工数を超えることから、デジタル技術を活用する方法が望ましいと考えられます。 原因検証はどう? 原因探索において重要なのは、単にABテストを行うことではなく、原因仮説を体系的に(MECE)導出し、それぞれを迅速に検証するプロセスです。たとえば、特性要因図や5 Why分析を用いて複数の原因仮説を立て、適切な方法でスピーディーに検証していくことが求められます。特に人事分野では、複数の要因が絡むため、一つの真因に固執せず、各要因の寄与を考慮しながら柔軟に仮説検証を進めることが大切です。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

戦略思考入門

3CとSWOTで見つけるビジネス強み

フレームワークの活用法を学ぶ 3C分析とPEST分析は事業の成功を導くための有力なフレームワークです。3C分析では競合、市場、自社の顧客ニーズを整理し、自社の強みを明確にします。さらにSWOT分析を組み合わせることで、弱みや脅威を発見し、それを強みや機会に転換する方法を学びました。これにより、どの場面でどのフレームワークを活用するべきかを理解でき、特にビジネスの比較が具体的にイメージできるようになりました。特徴の理解は強みの発見につながります。 事例を通じた深い理解とは? 特に、実際の事例を通じてフレームワークがどのように適用されるのかを考えることで、理解がより一層深まりました。具体的には、3C分析によって市場や顧客のニーズを把握し、自社の独自性を明確にした後、SWOT分析でその独自性が真の強みであるかを検証することができます。また、バリューチェーン分析を通じて店舗の業務フローを整理し、貢献度の高い部分を特定することの重要性を学びました。 効果的な人材教育を怎麼考える? 業務の効率化に向けて、長期的には設備の導入といった機械化を検討し、短期的には貢献度が高い業務を担う人材の育成に注力します。これには、他部署との連携や市場調査による情報収集が不可欠です。また、人材教育では、資格や等級に応じた研修を実施し、効果的な教育スケジュールを組むことが求められます。こういった要素をフレームワークを駆使して分析し、具体的な戦略を立案することが肝要です。

クリティカルシンキング入門

新たな視点を開発する思考法学び

クリティカルシンキングの技術をどう活用する? クリティカルシンキングというテクニックを用いることで、課題に対して適切な解を導く方法を学びたいと思います。物事を客観的に捉えることによって、考えが偏ったり固定観念にとらわれたりすることを防ぎます。反復練習や他者とのディスカッション、時には内省により、新しい視点を開発するための頭の使い方を身につけたいです。 問題解決に必要な視点とは? 日常業務においては、新たなルールの決定や改善が求められますが、「問題だ」と誰かが指摘した一言にただ反応するのではなく、問題の本質や他に同様の問題があるかどうか、また将来的に発生するかもしれない問題についても多角的に考え、最適解を模索していくことが重要だと感じました。 プロジェクトの目的を見失わずに進行するには? さらに、プロジェクトに参加する際には、「この企画を実施する」ことが目的となりがちですが、本来の目的を見失わないようにすることが肝要です。目的を明確にし、その上でプロジェクトを進行するよう努めたいです。 行動を深く考える習慣をどう付ける? 私自身は思い立ったらすぐに行動に移すタイプですが、これからはもう少しじっくりと多方面から考える癖をつけるよう心がけます。他の人がどのように考えるかを頭に置き、「なぜ?」を問う姿勢も大切にしたいです。また、チームで仕事をする際には、自然と多様な視点が開発される機会を設け、トレーニングの場を作りたいと考えています。

クリティカルシンキング入門

点から線へ広がる学びの旅

学びの意味は何? この6週間の学びを通じて、知識が点から線へと統合される感覚を持つようになりました。これからは、以下の流れに沿って課題に取り組み、その答えを導き出していきたいと考えています。 問いの定義は何? まず、考え始める前に「問い」が何であるかを明確にすることが重要と感じています。次に、現状を丹念に分析するため、データを細かく分解し、ひと手間加えることでより深く理解できるよう努めます。また、視覚的に把握するために、MECEやロジックツリーといったフレームワークを活用し、論理の流れを整理します。 主張の組み立てはどう? さらに、根拠に基づいた主張の組み立てを心がけ、伝えたい相手に的確に伝わる文章や資料作成を実践していきます。その際には、作文では主語や述語、文章の長さに注意し、資料作成ではリード文を工夫し、データの順序や主張の強調、さらにグラフなどを活用して視覚的な伝達にも配慮します。 問題解決の鍵は何? 特に、営業課題や人事課題など具体的な問題に対しては、日々発生する小さな問題も含め、何を解決したいのかを常に意識しながら分析と主張のプロセスを実践していきたいと思います。そのため、まず一つの対象を決め、課題に対する答えを導き出すことに注力し、実施期限を設けることで意図的に時間を確保していきます。さらに、資料化した内容は他者と共有し、理解度や納得感についてフィードバックを得ることで、より良い解決策を見出していこうと考えています。

データ・アナリティクス入門

大学生活のデータ分析で見えた成長のカタチ

仮説立てに必要な視点とは? 仮説を立てる際には、先入観に囚われず、考えられるあらゆる要素を踏まえることが重要だと感じました。これまでの経験も無論大事ですが、現状のデータを新鮮な目で眺めることが重要だと思います。 仮説が抱える落とし穴は? また、仮説とは自分で仮の答えを設定すること、という点についても非常に腑に落ちました。それというのも、仮説を立てたとしても、それが必ずしも現状の問題解決になっていないことがあるからです。 大学で得る成長とは? 大学での学びについては、一般的には学生の成長にさほど寄与しないと指摘されることがあります。しかし、それが本当なのか、またそうだとしたら何が原因なのかを検証したいと考えています。 データ分析で何を探る? 最初の仮説として、「大学での4年間は、何らかの形で学生の成長に貢献しているはず」という仮説を立て、大学内のあらゆるデータを分析していきます。 学生の成績変化をどう評価する? 具体的には、入試の時の成績とGPAを比較し、著しく成績が伸びた学生をピックアップします。彼らにアンケートを実施し、4年間のパフォーマンスを学業、学業外活動、就職結果などの要素に分けて点数を付けてもらいます。 インタビューで何を聞く? 最後に、各数値の典型的な学生をピックアップし、個別インタビューを行う予定です。

クリティカルシンキング入門

本質に迫る思考法を身につけた成果とは

学びをどう振り返る? 今までの学びを、落ち着いて振り返ることができました。一番の収穫は、「本質に迫るにはどうしたらよいか」「どんな思考経路で本質に迫れるのか」というスキルを得たと感じた点です。授業でも何度も強調されたように、学びを何度も読み返し、別ノートにまとめたものと照らし合わせながら自分の習慣として定着させていく。これに尽きると思います。 会議のイシュー設定は? ミーティング時には、ファシリテーターを務めるときに必ずイシューの明確化を行います。また、ミーティング中にズレが生じそうな時には、都度メンバーにイシューの投げかけを行い、議論が軌道を外れないよう努めます。 報告書作成の注意点は? 各種報告時には、文章生成において主語述語を徹底し、上司への報告時やメンバーへの共有時には、一文を読んで確実に理解が得られるような文章を作成します。 プロジェクトでの実践方法は? 現在進行中のプロジェクトでは、以下の点を実施しています。まず、ミーティングのファシリテーション時にはイシューが明確化されているか確認し、ズレが生じそうな場合にはイシューを共有して議論内容が偏らないようにしています。次に、資料作成時には適切なグラフを使用し、数値説明を行う際に浅い説明にならないように気をつけ、視点を変えて報告するようにしています。最後に、上司へ報告する際や仲間への情報伝達時には、主語述語が適切に使われているか確認し、理解しやすい文章を心がけています。

戦略思考入門

戦略的課題解決: 効果的な一歩を踏み出す方法

戦略はどう学んだの? 講座を通じて、戦略とは目的に向かって効果的かつ効率的に進むための手段であることを学びました。目的が設定され、共通認識を持つことが前提となる中で特に重要だと感じたのは、以下の三つです。 課題をどう見抜くの? まず、課題が発生している部分を明確にすることです。次に、課題解決に向けて適切なフレームワークを段階的に使用すること。そして、優先順位を決めることが重要です。 目的は何を意識? 私自身が常に心掛けたいのは、目的に立ち返ることです。なぜ今この課題解決に取り組んでいるのか、なぜ強みや弱みに対する強化や対策を行っているのかを忘れず、判断するときにはその目的を意識し続けることを目標としています。 活用法はどう検討? 具体的な活用法としては、まず組織編制の際に定量的情報を多く取り入れることにより、効果的かつ効率的な編制を提案していきたいと思います。また、業務設計においては、既存業務で発生するエラーを減らすためにバリューチェーンを活用し、課題の多い部分を特定し、改善を実施することを目指します。 どうやって行動する? これらを実現するために、まずは文字に書き起こし、個人ワークで仮説を立て、その後に正確な情報を周囲から集めて検証していきます。このように行動することで、目的が共通認識され、その達成に貢献できる提案が可能となる環境を整えていきます。したがって、第一ステップとして、文字に書き起こすところから始めます。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

「実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right