デザイン思考入門

異なる視点が拓く学びの扉

営業観察のポイントは? 私は営業経験がなかったため、営業の日常や業務、そして顧客の様子を観察することで、潜在的に満たされていないニーズや抱える問題に気付けると感じました。また、顧客向けのサービス改善については、普段から顧客と接点を持っている営業メンバーを初期段階から巻き込んでデザインすることで、自分だけでは実現が難しい新しい発想を生み出せると考えています。 体験と意見はどう違う? 自身の体験に基づく感覚や気づきは大切である一方で、異なる視点を持つメンバーや顧客の多様な意見を収集することも重要です。特に担当する事業の規模が大きい場合は、万人受けを狙う必要があるため、幅広い意見を取り入れることが求められます。ただし、個性的な商品を開発する際は、強く実感した体験を基に判断することも必要だと考え、両者のバランスを意識して使い分けたいと思います。 調査手法の有効性は? また、調査手法は複数存在しますが、一人で考えると非効率だったり視点が不足してしまうため、参加型デザインと調査を組み合わせることで、より有効なニーズ把握と具体的な打ち手の作成につながると感じました。客観的な観察とともに、実際に体験する参与観察の手法も非常に有効だと思います。 背負い具の課題は? たとえば、バックパックに関しては、いくつかの課題を思いついたものの、どの課題が最もクリティカルな問題なのかは実際に体験してみないと判断が難しいと実感しました。体験を通じて、さまざまな課題が浮かび上がる中で、登山体験において特に重要な問題がどれであるかを見極める必要があると感じています。

戦略思考入門

関係者の本音を紡ぐ実践学習

発言の論点は何か? 事業方針を策定する際、複数の関係者からヒアリングを行う場合には、発言がどの論点に基づいているのかを常に意識する必要性を感じました。そのため、各プロセスを明確にするためにバリューチェーンの視点が非常に重要だと実感しています。実践演習では、営業、印刷デザイン、印刷、配達、納品といった各プロセスに着目することで、意見の立場がどこに位置づけられるのかを意識する必要があることを学びました。また、個々の立場や直近の経験により、意見には無意識のバイアスがかかることも念頭に置くべきだと考えています。 承認の疑問は何? 海外の浄水場新設プロジェクトの設計段階において、施工工程を説明した際、発注者である自治体の担当者から、ある選挙に向けた承認が必要であるため、現行の工期内に完了できるか不明だという指摘がありました。この指摘は、バリューチェーン上の承認プロセスに関連する懸念から生じたものでしたが、設計工程ではその承認プロセスが十分に考慮されていなかったことが問題点として浮き彫りになりました。こうした点から、関係者の立場や背景を踏まえた資料作成や、事前の打ち合わせがより一層求められると感じました。 業務開始の確認は? 転職先での業務を想定する場合、まずはクライアントの専門分野や立場、組織構造といった事前情報を可能な限り収集することが大切です。同時に、クライアントの業界におけるバリューチェーンの構成を把握しておくことで、初回のヒアリング時には発言内容がどの論点に属するのかを明確に質問し、整理する姿勢が求められると再認識しました。

データ・アナリティクス入門

多角的発想で拓く学びの扉

仮説の立て方は? 仮説を立てる際には、複数の仮説を提示し、網羅性を意識することが大切です。3Cや4Pといったフレームワークを活用すると、仮説を立てやすくなることを実感しました。また、単に考えただけでなく、様々な切り口からアプローチするよう努めることが重要だと感じました。 データ選びはどう? データ収集については、誰にどのように聞くかが非常に大切です。自分に都合の良いデータだけでなく、反対の意見となる情報も収集するよう心掛けています。一見、目の前にある情報だけで判断せず、目的に沿ったデータであるかどうかを考える重要性を改めて感じました。実際、抽出したデータで本当に検証したい内容が導き出せるかを、常に見直す必要があると考えています。 サービスはどう伝わる? 新しい運用やシステムの活用状況、また提供しているサービスがどのようにお客様に届いているかを分析する際は、まず言葉で仮説を立てることに取り組んでいます。これまで、数値を見ただけで直感的に考え、その立証に必要なデータをどう抽出するか検討していましたが、目的に合致しているのか不安に感じることもありました。そのため、自分にとって都合の良いデータだけに偏らないよう、改めて意識しています。 生産性向上はどう? また、社内の生産性向上施策が実際に効果を上げているかを検証する際にも、フレームワークを用いて複数の仮説を立て、網羅的に検討することを意識しています。抽出したデータが目的に沿っているかを確認した上で、そこからどのような結論が導けるのかをしっかり検証することが重要だと感じました。

データ・アナリティクス入門

未来を変えるデータの魔法

データはどう戦略へ? 講座全体を通じて、データ分析の重要性と問題解決のフレームワークが非常に印象に残りました。データ分析は、過去のデータを活用することで客観的かつ効果的な戦略の立案を支え、意思決定の根幹となります。また、4つのステップを用いる問題解決法は、複雑な課題を整理し、具体的なアクションプランを導き出す助けとなりました。グループワークでの意見交換を通じて得た新たな視点も、学びを一層深める貴重な経験でした。これらの学びは、今後の業務にも積極的に取り入れていきたいと感じています。 キャリア教育、なぜ必要? また、今回の学びは社員のキャリア教育や研修の現場にも十分に活かせると実感しています。社員のキャリアパスやスキルセットに関するデータを分析することで、効果的な研修プログラムの企画が可能になります。さらに、研修後の業務成果を比較分析することで、プログラムの効果を検証し次回以降の改善に結び付けることができます。社員のキャリア希望を正確に把握し、それに基づいた教育プログラムを設計することで、より有意義な支援が実現できると考えています。 改善はどう実現する? 具体的には、まず社員のスキルやキャリア希望に関するアンケートを実施してデータを収集し、その後、得られたデータをしっかりと分析します。分析結果をもとに効果的な研修プログラムを企画し、実施後は参加者からのフィードバックを反映させた改善サイクルを構築します。こうした取り組みにより、社員の成長を促進し、キャリア教育の質を一層高めることを目指しています。

リーダーシップ・キャリアビジョン入門

振り返る!成果と人間性の調和

マネジリアル・グリッド理論で何が重要? マネジリアル・グリッド理論では、業績への関心と人間への関心のバランスが重要であると感じています。特定の型が良いとは限らず、両方の観点を柔軟に持つことが求められるでしょう。私の職場では、結果だけに集中しがちで、人間への関心が低下していると感じました。やる気のない人を放置したり、自分でやった方が早いと考える点についても改善が必要です。 パス・ゴール理論の理解を深めるには? パス・ゴール理論においては、指示型、参加型、支援型、達成志向型の4つの区分があり、それぞれの理解が基本になります。区分にはとらわれず、状況によって臨機応変に対応することが理想的です。部下の適合要因は理解できるものの、環境要因を打破するのは難しいと感じます。 どうすれば人間への関心を高められる? 人間への関心を高めるためには、まず「結果を出す」という視点に加え、個々人の強みを伸ばし生かす視点を取り入れる必要があります。たとえば、参加型の手法を用いて他の意見を取り入れやすいコミュニケーションを心がけることが重要です。また、後輩が質問をしてきた際には、その背景を伝え、考える時間を与えることが大切です。これにより、後輩は自信を持ち、若い視点から新しいアイデアが生まれることを期待できます。 キャンペーン企画での意見収集の重要性 キャンペーン企画の際にも、すべてを自分で決めるのではなく、意見を積極的に収集し、皆で作り上げることで、やらされ感ではなく参加感を高められるように心がけたいと思います。

マーケティング入門

対話で創る本物の体験

体験の差別化は? 「体験を考える」というテーマを通じ、ただ優れた商品を提供するだけでなく、その商品を通して得られる独自の体験が差別化につながるということを再認識しました。具体的には、個々の商品に飛び抜けたものがなくても、全体で見ると顧客が大満足しているという事例から、唯一無二の体験を提供できることの重要性を感じました。 一人だけでは? また、総合演習では、顧客視点で考える難しさを痛感しました。一人で考えを広げるには限界があるため、チームでの意見交換やヒアリング、アンケート、さらに顧客の行動観察など、さまざまな情報収集が必要だと実感しました。 顧客の本音は? 今後は、クライアントの心理を的確に捉え、常に顧客の立場に立って何が求められているのかを考えながら、対話や観察を行っていきたいと思います。私たちの商品を単に売るのではなく、顧客にとって「必要なもの」と感じてもらえるよう、デザインやネーミングにもこだわっていく所存です。 価格競争を避ける? さらに、無駄な価格競争を回避するため、市場分析のフレームワークを活用し、ターゲットを明確に絞り込んで自社の強みを存分に発揮できる商品作りに取り組みたいと感じました。 顧客体験の検証は? 訓練項目としては、まず顧客がどんな体験を望んでいるのかを考えること、次に売れない商品がどのような体験につながるのかを検証すること、そして、全体を俯瞰して良い体験を生み出す方法を模索することが挙げられます。

クリティカルシンキング入門

業務での「MECE」実践法を身につける

学習計画をどう進める? 学習計画を忘れずに進めることが大切だと思いました。私はMECEの分け方でプロセスを分解することを忘れがちなので、この技法を使う癖をつけたいと考えています。 情報収集の重要性とは? さまざまな切り口で分析するためには、常に多様な情報を収集できるようにする必要があると感じました。例えば、カフェでのお客の滞在時間や年齢、それに利用目的をどのように把握するのかについて、日々意識を持って観察しないと有益なデータは得られません。 問題発見にプロセス分解? 業務においても、問題発見と解決のためにプロセスを分解することが有効です。特に問題がなさそうに見える場合でも、分析を進めることで問題が顕在化し、改善策を見出すことができるでしょう。例えば、サプライチェーンやバリューチェーンのどの部分に問題があるのかを見極めたり、予決算分析で単価や数量に分解してみたりすることが挙げられます。また、部下との1on1ミーティングでも、MECEに基づいて事前に準備を進めることが役立ちます。 学びをどう業務に活かす? これらの学びを今日から業務に取り入れてみることが重要です。アナログのツール、例えば紙なども積極的に活用するべきです。そして、単発で終わらせずにしばらく経ってから再度考えることも必要です。また、自分一人では偏りや視点の漏れが生じやすいので、信頼できる他人の意見も積極的に取り入れるように心掛けたいと思います。

データ・アナリティクス入門

数値が導く学びの冒険

数字はどう見える? まず、数字の見方について考えると、仮説を立てた上でデータを収集し、その後の分析で仮説の検証を行うという流れが基本だと感じました。AIを使って情報を収集する場合でも、自分なりの考えを持ち、AIから得られた情報と自分の意見を照らし合わせることが大切です。もしも自分の予想と結果が異なった場合、その違いがどこから生じたのかを考えることで、新たな学びのヒントが得られると実感しています。 代表値はどう見る? 次に、データの見方としては、代表値に注目しました。単純平均、加重平均、幾何平均、中央値など、データの性質や目的に応じて使い分けることが必要です。また、散らばりを示す指標としては標準偏差があり、これらの数値をグラフ化することで、直感的に状況を把握できる点も魅力的だと思いました。 業務の数値活用は? 普段の業務では、商品の売上や原価、コストダウンの検討などで、いろいろな平均値を算出することが新たな発見につながるのではないかと感じています。そして、その結果を他者に説明する際に、グラフを活用することで、理解を深め、合意形成をスムーズに進めることができると確信しています。 AIで何を発見? 日常の業務の中で、実際に数値をAIに入力して計算やグラフ化を試みることで、これまで気づかなかった事実や見逃していた視点を発見できるのではないかという期待があります。来週には、何かの案件で試してみるつもりです。

リーダーシップ・キャリアビジョン入門

リーダーシップは誰にでも学べる

地位を超えるリーダーシップとは? リーダーシップは地位に関係ないと実感しました。リーダーシップは誰でも学ぶべきだと感じます。過去に関わった上司の中で良かった人を思い出し、その理由を考えると、理想のリーダー像を考える際に大変参考になりました。その上司を思い出すのも楽しいので、他の人にも試してみることをお勧めします。 私が目指す理想のリーダー像 学んだことをもとに、私が目指すリーダー像を次のように整理しました。まず、我々の進むべき方向性を示し、先を見通せることが大切だと考えています。また、話しやすい態度で相手の意見を否定せず、相手を認め、褒め、任せ、助言することが重要です。フォロワーの成長を導き、説得力を持って付いていきたくなるような存在でありたいと思います。さらに、自分自身も情報収集や学びを続け、常にポジティブで熱心であることを目指しています。このようなリーダー像を意識することで、仕事のあらゆる場面で良い影響を与えられると思います。 会議での活発な意見交換は? また、近く行われる予定の5カ年計画を考える会議の場で、我々の目指す姿の案を示し、意見交換を図りたいと考えています。会議では、全員が意見を言いやすい雰囲気を作り、相手の意見を否定しないことを心がけます。そして、毎日最低1回、部下の行動を褒め、その後必要に応じて助言し、基本は任せるというスタイルを大切にしていきたいと思っています。

データ・アナリティクス入門

仮説が拓くわたしの挑戦記

仮説の基本は何? 仮説とは、ある論点に対して一時的な答えを示すものであり、結論の仮説や問題解決の仮説など、さまざまな形で用いられます。この仮説を立てることで、検証マインドや関心・問題意識が向上し、行動のスピードや精度も高まるという効用があります。 データで示す理由は? また、仮説はそれ自体の正しさをデータで示す必要があり、その方法が非常に重要となります。データにより正しいことが証明されるとともに、他の説が否定される仕組みが求められます。良い仮説を構築するには、フレームワークの活用も有効であり、フィールドワークやエスノグラフィーといった手法が、質の高い仮説作成に寄与するという意見もあります。 仮説思考はどう役立つ? さらに、仮説思考は課題や目標の検討にも役立ちます。次年度の事業目標や事業拡大のために、自分なりの課題設定を行う際、また顧客ニーズの変化や新市場を捉える際に、仮説を立ててアイデアを具体化することが求められます。 来年度の目標設定はどう? 来年度の目標設定においては、売上などの事業指標だけでなく、競合との比較や自社への影響を示す独自のインデックスを仮説として設定することが推奨されます。その仮説がどのような状態になれば「影響がある」と判断できるのか、ほかの指数と照らし合わせながら検証し、実際にデータを収集して売上や実感との整合性を確かめることが大切だと感じました。

クリティカルシンキング入門

新しい視点で業界の常識を打破する方法

なぜ思考を制約するのか? 人間は「考えやすいこと」や「考えたいこと」を優先して考えてしまう傾向があります。自由に発想できるにもかかわらず、無意識に思考を制約してしまうことがあるのです。クリティカルシンキングにおいて、自分の思考をチェックする「もう一人の自分」を育てることが重要です。理解していても、発想の「制約」や「偏り」は避けられません。それを防ぐためには「頭の使い方」を知っておくことが必要です。クリティカルシンキングはまさにその「頭の使い方」の土台を築くものです。 固定観念をどう打破する? 私の周りでも長く業界にいる人が多いのですが、新しい視点を考える際に、業界の固定概念に縛られてしまう人が多いと感じます。それでは真の新しい発想とは言えません。そうした固定概念に対する認識を改めさせられました。今後、新たな業界への進出も見込んでいるため、自分の思考能力をさらに磨いていきたいと考えています。 思考を深める鍵は何? 業務の移管、AIを用いた効率化、そしてプレゼンテーションといった分野で、スペースを持ち考えをまとめてから行動に移すことが大切です。その際、本当にそれが最善かどうかを何度も考え、決定した後も常に自問自答を繰り返します。また、自分だけの考えにとどまらず、他者の意見を収集して思考の幅を広げることが重要です。相手が理解しやすい言葉選びや表現を常に意識していきたいと思います。

戦略思考入門

多様な意見を取り入れつつ、自社の価値観を貫く方法

柔軟な思考をどう育む? 戦略を立てる上では、思考様式やツール(フレームワーク)の知識を基礎としながらも、多くの知識と他者の多様な考えに触れることで得られる柔軟な思考や発想が重要だという点が印象的でした。しかし、一方で、それらの多くの知識が逆に足かせとなったり、他者の考え方から悪影響を受けないように、自社の経営方針や価値観を判断の拠り所とすることも常に意識する必要があると感じました。 情報収集と分析のポイントは? 今週の学習内容とは少し異なりますが、事業計画の策定においては、できる限り多くの情報を収集し分析することが求められます。その際、「①自己の都合の良いように解釈したり、拡大解釈しない」ということと、情報や分析結果を基に戦略を立案する際に「②自社のMVV(ミッション・ビジョン・バリュー)との整合を取る」ということが重要だと思います。 まず、①については、自身の出した結論に対する論理を明文化して、他者に意見を求めるという流れを基本的なプロセスとして進めることが肝要です。 MVVと戦略の整合性を保つには? 次に、②については、MVVを日頃から目に触れる場所に掲示したり、作成するドキュメントに盛り込むことが有効です。また、レビューチェックシートにチェック項目として設けるのも良い方法かもしれません。これにより、常に自社の価値観や目標を意識した戦略策定が可能となります。

「意見 × 収集」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right