デザイン思考入門

受講生の声が導く解決のヒント

本質の学びは何? 今週の学びのポイントは、①問題の本質をとらえる、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善の5点でした。特に③顧客課題仮説の作成は、何となく感じていた課題を「●●は●●という状況で、●●という課題を抱えており、●●という解決策を提供できるのではないか」という形に整理することで、その課題が真に本質的なものかどうか、またその根底にある意図に気づく大きなヒントとなりました。 受講生の視点はどう? 先日、担当しているビジネススクールで、受講生から「自習時に周囲が気になって集中できない」という課題が相談されました。当初は「耳栓を使用してみてはどうか」といった提案をしましたが、今回の学びを踏まえ、これを改めて課題仮説に当てはめてみることにしました。その結果、「受講生は教室で自習する際、周囲が気になって勉強に集中できないという課題を抱えており、簡易パーテーションを設置するという解決策を提供できるのではないか」という形に整理でき、受講生の立場に立った新たな視点に気づかされました。 環境改善の鍵は何? これまで「周りが気になる」という相談に対しては、うるさい受講生への注意や配慮を促す張り紙の掲示など、ソフトな対応を中心にしてきました。しかし、受講生の目線で考えると、簡易パーテーションのような物理的な解決策があれば、より快適な環境が整うことに繋がると感じられたのです。もちろん、実際にそのような取り組みを行うには費用面などのハードルがあるものの、その障壁があったためにこれまで検討の対象になってこなかったと改めて認識しました。 ユーザーの隠れたニーズは? また、今回の学びでは、観察やインタビューを通じて得たユーザーの気づいていないニーズ(暗黙知)や認識しているニーズ(形式知)をもとに、本当に解決すべき課題を定義する重要性を学びました。文字情報の分析や定性分析、コーディング、さらにはKJ法や付箋紙法といった手法を通じて、受講生への共感から本質的な課題を抽出するプロセスが理解できました。初心者は、まず観察から得たメモの中からポイントを抽出することから始めるとよいとのことです。 解決策検討の視点はどこ? 今日の学びとしては、ユーザーの声を素直に受け止め、様々な角度からソリューションを検討する姿勢がいかに重要かを実感しました。ユーザーの話を聞く段階では十分な理解が得られても、実際に解決策を検討する際には、初めから制約にとらわれて選択肢が狭まってしまいがちです。そこで、課題文として整理するステップを設けることは、広い視野を保つ上で意義深いと感じました。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

データ・アナリティクス入門

成長の瞬間:成長と仮説力の融合

振り返りで何を学んだか? Week1からWeek6までの講義や演習を振り返り、私の中では「つい決め打ちしてしまう」という考えが消え、多くの仮説を立てられるようになりました。これにより、今後の仕事における課題解決や成果につながると感じています。特に、今回のライブ授業での陶芸体験の演習では、様々な仮説や解決策が瞬時に思い浮かび、考えることに対して柔軟になったと感じました。 少しずつ成長していることを実感し、自分が勉強や学ぶことが好きだということを改めて思い出しました。 オウンドメディアでの検証方法は? 弊社のオウンドメディアにおける検証については、まずSEO数値分析やユーザー導線の見直し、SEOコラムのオーガニック増加をMECEで分類し、細かく分析しました。影響力の大きい分類だけでなく、%が少なくても重要視すべき分類もあるかもしれないので、細分化しました。6つくらいの大分類に分けてリライトの優先順位を決めました。 新規ユーザー獲得への取り組み 自社のWebサービスについても、以下のように活用しています。 1. 新規ユーザー獲得導線の増強に活用(Google広告のKWD分析など)。 2. 現在のユーザーに関しても分析し、新規獲得に活用。 まずは、自分のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録増加と正しいKWと属性のユーザー獲得の仮説を検討しました。その後、スケジュールを立ててチームに共有。これにより、新たな発見や課題が出ることを期待しています。 3Cと4Pフレームワークの活用 また、オウンドメディアからの新規ユーザー獲得について、メディアの3Cの内「市場」と「競合」を4P(商品、価格、場所、プロモーション)フレームワークを活用して網羅的に検証しました。既存ユーザーに対しても同様に4Pフレームワークを活用し、ゴールまでの仮説を立てました。 Webメディア運用での問題特定法 自社Webメディアの運用では、現状の問題を特定し、What、Where、Why、Howの各要素に分けて進めました。また、A/Bテストやサイト上でのサムネイル策定、広告でのABテストに時間をかけ、効果を出していきたいと考えています。 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道です。正解はないので、広く視野を持ちトライアンドエラーの精神で、複数の選択肢を視野に入れサイクルを構築。短期・長期のモデルを検討しながら結果をしっかり分析し、最大限の効果が現れるように、その見極めができるようになりたいと考えています。

クリティカルシンキング入門

ビジネスの障害と繋がりを発見する思考法

考える力を深める方法とは? 自身の思考を広げ、本質的な課題や解決策を導き出すためには、「目的意識」「3つの視」「具体と抽象化の繰り返し」「問い続けること」が重要だと学びました。これらを怠ると、「問題の本質に気付けていない」「狭い範囲の検討に留まり議論のすれ違い・解の見落とし」というビジネスで成果を出す上での大きな障害を放置することになると感じました。 新たな価値を創出するには? これらの要素を使いこなすことで、それまで別の事象としてしか捉えていなかったことの繋がりを発見し、他者が気付かないような価値(ソリューションやビジネスモデル)を創り出すことができると気付きました。特に、「3つの視」についてはこれまでは「2つ上の目線で考える」ことを重視してきましたが、視座の高さだけでなく、視野・視点を意識することでより客観的な視点を得て、論理的な理論構築が可能となると感じました。 情報収集の精度を上げるには? また、自身や自社の専門性の無い分野へのソリューションやビジネスモデルの検討において、まず当該市場の初期調査を実施しソリューション検討に入りますが、得られる情報だけでは適切な市場・顧客セグメント・ターゲティングの検討が十分な精度でできていないと感じています。調査では省庁資料や専門誌からの情報取得、フレームワークを活用した課題整理など、効率的な進め方を意識していますが、後から情報を継ぎ足しで補完することが多々あります。そして、そうして得た情報の中に本来気付くべき課題やソリューション検討のヒントになる情報が隠れていたと後ほど気付くことも多いです。クリティカルシンキング、特に「3つの視」「具体と抽象化の繰り返し」を意識することで、情報を的確に深く調査し、精度の高い解や仮説を導けるようになると感じました。 プレゼンスキルを向上させるには? さらに、役員向けプレゼンを行う際、「3つの視」「具体と抽象化の繰り返し」「問い続けること」を意識しストーリー構築を進めることで、自身の主張を裏付ける根拠の論理性が向上し、論理の飛躍を防止する効果が得られると感じました。 業界分析のアプローチ法は? ソリューション提供やビジネスモデル構築に関わる業界、企業、個人(クラスター)を「3つの視」で捉え直し、「他に対象はないか」「構築した仮説は他の視点・視野・視座から視た際にどうか?それらを考慮し他に検討すべき事項は無いか」などを深掘りする。他に検討すべきことが見つかった際は、具体と抽象の思考でタテ・ヨコ・ナナメの関連事項を洗い出す、というプロセスが重要だと感じました。

データ・アナリティクス入門

逆算で探る課題解決のヒント

結果から問題設定は? 問題や課題を解決するには、ただ漠然と分析するのではなく、まず結果から逆算して問題を設定し、その根本原因を把握することが重要だと学びました。表で示されたデータを図に起こすことで、全体像を俯瞰しやすくなり、どこに課題が潜んでいるかを明確にできると感じました。 数字の裏側は? また、計画値と実績値のギャップが全体にどの程度影響しているかをパーセンテージで示すことは、単なる数字の大小だけでなく、その背後にある要因を突き止め、分析の精度を高める上で有効です。単に数字が大きいという事実に注目するだけでなく、継続して損失が出ている状況など、現場での定性的な情報も加味し、何を最優先で分析すべきかを決めることが大切であると感じました。 分析の切り口は? さらに、すべてのデータが整っているわけではないため、まずはどの切り口でデータ分析を行うか、仮説を立てた上で手元のデータを整理、収集する姿勢が求められます。データに向かう前に、視野を広げ多角的に問題を捉える体制を整えることが鍵となります。 現状と理想は? また、現状(as is)と理想(to be)のギャップを明確にすることが重要です。何を理想とするのか、どこにギャップがあるのかという点を関係者全員で合意することが、問題解決のスタート地点になると理解しました。 解決策の整理は? 問題解決には、改善を目的とするアプローチと、さらなる向上を目指すアプローチの2つがあり、ロジックツリーのような思考整理のツールは、全体を複数の要素に分けて検証する際に非常に役立つと感じました。具体的には、層別分析や変数分析などを駆使して、細部にわたる解決策を検討することが効果的です。 その他の注意点は? 加えて、全体の中で『その他』に分類される割合が大きくなる場合は、データの切り分け方が適切かどうかの見直しも必要です。数値上は少数であっても、影響力が大きい要素には十分な注意を払うことが重要だと思いました。 戦略分析はどう? 広報戦略や施策の検討においても、ロジックツリーなどを活用し、どの視点からデータを分析すべきかを考えることが有効だと感じています。また、ウェブから得たデータを単に眺めるのではなく、具体的な問題や課題を設定し、何を知りたいのかを明確にすることで、分析の精度を大いに高めることができると思いました。 定性情報は何? こうした定量的な分析に加え、定性的な情報も取り入れる事例を学ぶことで、納得感を持ちながら現場の試行錯誤をより深く理解できるようになったと実感しました。

アカウンティング入門

数字が語る経営のドラマ

損益計算書とB/Sの意味は? 今週は、損益計算書(P/L)や貸借対照表(B/S)の基本構造と、それぞれが経営に果たす役割について学びました。特に「売上-費用=利益」というシンプルな公式が、どのように経営判断に活用されるか実例を交えて理解できたことで、業務においても数字に注目する視点が徐々に芽生えてきました。 数字の背景はどう読む? また、「売上高営業利益率」や「売上高原価率」といった指標を通して、経営の効率性と健全性を客観的に判断する視点を得られました。これまでただ並んでいた数字も、ストーリー性をもって捉えることができたのは、大きな前進だと感じています。 戦略の裏に何がある? ケーススタディとして取り上げられたカフェの事例では、数字の裏にある「戦略」や「思い」にも注目することの大切さを実感しました。単に数値の良し悪しを見るのではなく、その背景や立てた仮説を考える力が、経営判断に必要不可欠であると痛感しています。 財務の知識は増えてる? 自分自身、まだ財務の知識が十分とは言えませんが、「財務=経営の言語」であるという認識が深まり、少しずつ読み解けるようになった感覚があります。今後の講義でも、引き続き「数字の意味を考える姿勢」を大切にしていきたいと思います。 財務諸表から何が見える? また、「財務諸表を読む」という視点は、経理業務に直接関わらない私にとっても非常に重要です。財務三表のつながりを把握することで、会社全体の動きや課題が立体的に見えてくるという感覚は、点と点を線で結ぶような発見であり、大変有意義でした。 会議資料の数字はなぜ? 今後は、自社の月次会議資料に記載されるP/LやB/Sの数値を、ただの報告資料として流すのではなく、「なぜこの変動が起こったのか」「数字の背景にはどんな行動があるのか」を意識しながら読み解く習慣をつけていこうと考えています。まずは、関わる部門のコストに注目し、前年比の変化を読み取る練習を重ね、仮説を立てた上で、経理担当者や上司からフィードバックをもらいながら、理解を深めていく予定です。 黒字の危険性は何? また、講義で感じた問いとして「黒字であっても危険な会社は、どのように見抜けばよいか」という点があります。実際、損益計算書上は黒字であっても、キャッシュフローが不十分で会社が危うい状態に陥るケースがあるとの指摘を受けました。求人票などから企業の実態を見極める力も求められる中、黒字倒産の兆候について、他の受講生の方々とも意見を交わしてみたいと考えています。

デザイン思考入門

デザイン思考で本質を見つめる

デザイン思考の目的は? デザイン思考とは、人間中心設計のアプローチを体系化し、どのようなステップを踏んで実践していくかを示すプロセスです。まず、ユーザーの行動や感情を観察し、実際に体験するなどして、彼らが抱える課題やニーズに共感し、本質的な問題を明らかにすることが重要です。その上で、数ある課題の中から、イノベーションに結びつく本質的な問題を見出すことがポイントとなります。 なぜ解決策が重要? また、解決策のためには、アイディアを幅広く発散した後、最適なものを選別、具体化し、ユーザーからのフィードバックを受けながら改善を重ねるプロセスが求められます。こうした試行錯誤や開発者とユーザーとのインタラクションにより、単なる技術やプロダクトアウトの発想ではなく、顧客体験から新しいイノベーションを創出することが可能となります。 調査の本質は何? 私が現在関わっている調査研究業務の支援では、直近で手がける調査企画において、本質的な課題が何かを再確認することが大切だと感じています。関係者へのヒアリングや検証方法の検討を通じ、解決策がどのように次の施策へと反映されるのかを、常に意識しながら作業を進めています。 議論はどこで迷う? 講義を受けた後の振り返りでは、現場で本質的な課題について合意を形成することが難しく、「とりあえず手がけられる解決策」へと流れてしまうことが多いと実感しました。誰に向けた施策を,どのタイムラインで求めるのかによってゴールが大きく変わるため、解決すべき対象を明確にし、本質を見失わないように議論を深めていく難しさを感じています。 行動促進の鍵は? 直近では、勤務している大学の研究室で実施しているプロジェクトに関連し、ある行為を習慣化してもらうための要因や、心情的なプラス効果がどう特定の行動促進につながるかを、デザイン思考の視点で分析することを模索しています。調査企画を進めるにあたり、仮説、調査設計、調査票設計の各段階で、本質的な課題がしっかりと捉えられているか再度検討したいと思います。 知識整理の実践は? さらに、デザイン思考について他書籍や学んだ内容を資料や文章としてアウトプットしながら、知識を整理・定着させたいと考えています。将来的には、医療現場でのインタビューや現場調査の際に、広く不満やニーズを収集し、そこから本質的な課題や心理的なインパクト、行動への制約を理解するためのプロセスにデザイン思考の要素を取り入れることが目標です。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

データ分析が変えるビジネスの未来

分析を成功させるためには? ライブ授業を通して、次の3点を改めて整理できました。 まず、分析は比較によって成り立つということです。目的とアウトプットを明確にしてから分析に取り組むことで、闇雲な作業を避けることができます。 問題解決のステップをどう活用する? 次に、問題解決のステップ(What-Where-Why-How)の重要性についてです。当日の演習を通じて、これを実際に活用するイメージがつかめました。各ステップでは、目的を明確にし、ロジックツリーの活用や仮説設定、データ収集方法、データの見せ方などのポイントを整理しました。 データ分析から得た新たな発見とは? 最後に、分析のステップとして、検証したいことを具体的にし、仮説を立て、何と比較するかを意識しながらデータを集め、加工してビジュアル化することで、新たな発見が得られることを再確認しました。 また、データ分析の活用については以下の3点が挙げられます。 1. 企画立案時のマーケティングプロセスにおけるデータ活用 現状では、企画立案が現場の勘や経験に偏りがちですが、データを用いることで、より良い意思決定や施策運営につなげたいと考えています。さらに、他の施策との比較や過去のデータ分析を通じて課題点を洗い出し、マーケティングプロセスを改善していきます。 2. 施策振り返り時の検証 施策を振り返る際には、実績に対する問題や課題を明確にし、次の意思決定のために仮説を立てて検証することが重要です。 3. 課題解決に向けた活用 具体的な課題が提示されたときは、問題解決のステップと仮説検証の考え方を用いて取り組んでいきます。 学習方法の見直しがもたらした効果 これらの活用方法を通じて、アウトプットを進めていきたいと考えています。 さらに、本講座の復習をしっかり行い、学んだことを言語化しアウトプットできるようにし、問題解決ステップや仮説思考、フレームワークを実務に取り入れて練習します。自然に使いこなせるようになることを目指します。また、周辺知識の学習も継続的に進めていきます。データ活用にはクリティカルシンキングや伝える力、マーケティングに関する知識が必要で、今回自分に合った学習方法が見えたのも大きな収穫です。 今年度の目標達成に向けた取り組み 今年度は、施策の乱立を防ぎ、効率的な施策運営のために可視化データを作成し、リソースを他の業務に割けるようにしていきたいと思います。そして、掲げた目標に向けて努力を続けます。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

クリティカルシンキング入門

実務に直結!学びを実践化する力

実践への意識は? 本講座を通じて、具体的な実務の場面を想定し、どのようにして実践に移すかが重要であると学びました。これは単に新しい知識を得ただけでなく、「意識づけがされ、より実践できるようになった」と言えます。問いを立て、仮説を持つことの重要性は以前から理解していましたが、常に意識し、実践に結びつけることができていませんでした。 伝えたい要点は? 他者へ伝えたい重要なポイントとしては、以下の3点があります。第一に、すべての行動において課題と目的を明確にし、それを基に考えること。第二に、他者が納得するための客観性を確保するため、もう一人の観察者を育てること。第三に、具体的な事象を一段階押し上げて「要するに何なのか」を明確にするよう心がけることです。また、自身の行動を振り返る際には、「その考えは経験則や思いつき、場当たり的ではないか?」と問い、これをクリアすることが必要です。 どんな場面を考える? 以下の場面を想定しました。 ① 経営課題の解決、企画立案、プロジェクト計画・管理の思考段階において、問いからスタートすることが重要です。ただし、業務内容によりその問いの在り方が変わることに注意が必要です。例えば、経営における課題感では「何が問題なのか?」を考え、プロジェクト企画・提案フェーズでは「成功の要因は何か?」と問い続け、自問自答しながらチームで精緻化していきます。 ② 問いを事象に分解し、具体的な作業に結び付けていきます。大きな問いや目的を分解し、どのような取り組みをすれば実現に近づけるかを定義します。取り組みを発想する際には、アイデアではなく目的から逆算します。この実践には、計画段階でイシューツリーを作成し、実行の際に常にそのような思考を意識し続けて行動します。 ③ コミュニケーションにおいては、愛の感情や関心に配慮しつつ、メッセージを明確に伝えることが大切です。そして、相手の話を構造的に捉え、要点を押さえて言い換えることが求められます。場当たり的に自分の関心に沿った発言や聞き方をしていた過去を反省し、今後はマインドセットを変えて、ポイントが何であり、要点が何かを理解して話せるようにします。 ④ 上記の実践において鍵となるのは、抽象と具体の行き来です。具体的な事象を抽象的に捉え、他の案件にも応用できるよう一般化された知識として蓄積します。これにより、単なる経験則ではなく、複数の事例から傾向を掴んで伝えることができ、説得力が増すでしょう。

データ・アナリティクス入門

問題解決力を鍛える!仮説思考の体験談

仮説思考をどう実践する? ライブ授業を通じて仮説思考や問題解決のプロセスを実践した結果、自分がどの部分を理解しておらず、どのような思考のクセがあるかを把握できました。知識や情報が頭に入っていても、実際にそれを使ってみると、自分の理解が甘い部分や、学んだことを目の前の課題にどう適用するかの難しさに気づかされます。したがって、学んだ内容は業務内外で積極的に使ってみることが大切だと感じました。 思考のクセをどう克服する? 特に自分の思考のクセでは、仮説立案の際に目の前のことにとらわれすぎて、要因を広げすぎる傾向があることが分かりました。ライブ授業の課題においても、例えば「8月の売上が昨対80%」という現状を経営者の立場で考える際、一昨年対比では大差がなく、昨年が特需だったのではないか、時系列に見た時期のずれがあり、年間で見れば問題ないのではないか、と考えてしまうことがあります。このような状況では、もともと課題なのか課題ではないのか、という判断が必要になることも学びました。目の前の課題が「8月単月の売上減少」なのか「長期的視点での経営インパクト」なのか、それ以外の課題も考慮し、分析の目的を明確に定義することの重要性を感じました。 データ分析はどう進める? 様々な部署のデータ分析案件においては、まず最初に課題を明確にすることを心がけています。誰にどんなアクションを求めているのかを明確にして取り組むことが大切です。例えば、「商品Aのリピート率が課題で分析したい」という依頼があった場合、新規とリピートを比較し、なぜリピート率を上げたいのかという「なぜなぜ分析」を依頼者と一緒に考えるようにしています。その答えが売上アップだった場合、新規とリピートに分解した際に新規のインパクトが大きい可能性もあることに気づけるようにします。依頼された時点で依頼者が既に課題を分解して要因を特定している場合、特に注意が必要です。分析結果をもとに誰にどのようなアクションを起こしてほしいのか、共通認識を持って進めています。 課題擦り合わせの重要性とは? 事業伴走においても、まず最初に課題の擦り合わせを行います。自身で仮説を広げることはもちろん、「なぜ」を臆せずに聞くことを大事にしています。また、各部門の事業理解が深ければ筋の良い仮説を立案する上で役立つため、各部門の経営会議資料を読み込み、事業の収益構造や現状課題への理解を深めるようにしています。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right