クリティカルシンキング入門

問い続ける力が未来を創る

初めての学びは? Week1からの学びを振り返り、重要と感じた項目を整理しました。これを同僚に伝えるべきだと考えています。 問いをどう継続? まず、「問いを意識し続ける」ことが大切だと感じました。問いの意識を緩めてしまうと、物事を漠然と受け入れてしまうリスクがありますので、常に問いを意識し続ける習慣が必要です。また、経営者などの上位層の視点で問いの意味を考えることも重要です。現在のポジションの考え方では上位層の課題を理解するのは困難ですので、上位層の視座、視野、視点で問いを考え、課題を具体化する必要があります。 常識に挑む理由は? さらに、「そもそも」を意識し続けることが大切です。人は現在の業務を素直に受け止め、変えたくないと思う傾向があります。しかし、常識やルールに対しても常に疑問を持つことが求められます。資料作成も軽視せず、理解を早めるためのひと手間を惜しまないことが重要です。打ち合わせを口頭のみで行うのは相手に失礼であり、時間を浪費する行為ですので、資料を前提として、効果的に理解を得るための工夫を心がけるべきです。 経営層の視点は? 経営企画を担当している立場としては、様々な問いを持ち、課題や施策を検討していきたいと考えています。例えば、「全社の売上・利益を最大化するには?」といった問いに対する解答を見出すため、経営層・上司の視点を意識し、必要な情報を捉えることが重要です。また、根拠となるデータ収集・分析も重要なプロセスであり、そのための環境整備にも取り組んでいきたいと考えています。 報告の意義は? 業務上、毎月定例の業績報告があり、課題や施策の検討機会を得ることができます。この報告準備を課題・施策を考える契機とし、報告対象である経営層が必要とする情報を仮説しながら組み立てることを継続的に実施したいと思います。 研鑽の成果は? 自己研鑽の一環として、同僚や部下へのレクチャーを行うことで、自分のスキルアップにも繋がると考え、社内で勉強会を開催していきたいと思っています。勉強会の内容は、業務上でのクリティカルシンキングや戦略的思考を取り入れたものにし、業務と関連させることで理解を深めてもらいたいと考えています。開催後には、内容が本当に役立ったかを問い続け、常に反省し、内省する意識を持ち続けたいと思います。

クリティカルシンキング入門

考える力を伸ばす!柔軟な思考習慣の大切さ

本当に問題は何? 事象に対して「何が問題か」を捉え続け、「本当にそれであっているかな」と問い続けることの重要性を感じました。私自身、考えることに疲れるとすぐに白黒つけたくなりがちなので、根気よく問い続ける習慣をつけたいと思います。特に、自分の傾向として、上司などの声の大きい人の意見に流されやすいため、「イシューは何か」を判断基準にしたいと考えています。 捉え方はどう? 「イシューからはじめよ」を以前に読んだことがありますが、十分に理解しきれず、目的に対する消化不良が残っていました。しかし、特にWeek5の内容では、非常に分かりやすく業務に活かしやすい形で解説されており、具体的に自身の業務に当てはめて考えられるようになったと感じます。問い続けているうちに、「そもそも問題の捉え方が違った」と気づくこともあるでしょう。最初に立てた「イシュー」に固執せず、柔軟に考える習慣もつけたいです。 どんな課題がある? チームや自身の目標を立てる際には、現状の課題を抽出する段階で役立ちます。たとえば、不適合業務が発生した場合の原因分析や改善方策を考える際、また優先順位をつける判断基準としても活用できます。具体的には、以下の点を意識しています: どう具体化する? まず、チームや自身の目標を立てる際には、現状に対し「何が課題か」と問う癖をつけることが重要です。日々の業務でその意識を持ち続けることが大切です。ある課題Aが見つかった場合、その根本原因を探りより具体的な課題の抽出を心掛けることが必要です。抽象的な課題は抽象的な目標を生みやすく、それでは評価が難しいため、具体性を持たせることが重要です. どう原因を探る? 次に、不適合業務の分析や改善方策を考える際はさまざまな角度から原因を分解して考えます。「○○を実施していたらミスは発生していたか?」と仮説を立てて検証したり、固定概念にとらわれず「対」や「組み合わせ」を意識し、複数の原因がある視点を持ちます。改善策も具体的で評価できるものを考えることを大事にしています. どれを優先すべき? 最後に、業務の優先順位をつける際には、難易度や影響力から今何をすべきかを判断することを心掛けています。このようなアプローチを通じて、より論理的で効果的な業務遂行を目指したいと考えています.

デザイン思考入門

問いかけが育む共感の力

顧客の悩みは何? 業務でサービス開発に取り組む中、ターゲットとなる顧客にインタビューを実施し、悩みや課題を洗い出しながら、そこから得られるインサイトや示唆を導き出しています。これまでは感覚的に共通項や心理を見出していたものの、以下の問いを設定して進めることで、思考が一層明確になると感じました。 ・顧客が感じている悩みは何か? ・その背景にある思考や本能は何か? ・この思考に至る組織的な制約条件(評価や文化など)は何か? ・最終的に、根本課題や真因は何か? AIはどう評価? AIコーチングからは、顧客インタビューを通じて課題やインサイトを探るアプローチに対して高い評価が寄せられています。明確な問いかけを用いることで思考が深まった点は大いに評価できる一方、さらに具体的な顧客事例や背景を考察することで、理解がより深まる可能性が示されています。 解決策は何? また、以下のような問いも提示されました。 ・インタビューで見つけた顧客の悩みの根本原因に対して、どのような解決策が考えられるか? ・提示された「課題定義」の5つのポイントはどのように活用されているか? このような追加の問いかけを通して、顧客理解をさらに深めるために、さまざまな視点でのアプローチを試みることが大切であると感じます. 今回、提示された4つの問いで思考を巡らせた結果、提供価値に直結する良い結論(真因)を導き出すことができました。ただし、試行は一度に留まっているため、今後はさらなる改善を図っていきたいと考えています。背景にある思考や本能、さらには組織的な制約条件を探ることが「共感」に繋がるのではないかと感じています。 分析方法は? また、定量分析と定性分析についても再認識する機会となりました。課題定義フェーズでは定性分析を重視し、定量は仮説の立証に活用するという考え方です。「根本課題・真因」を考える際には、背景にある思考や本能、そしてそれに影響を与えた組織的な制約条件(評価や文化など)を深く掘り下げることが、インサイトの導出に繋がると感じます。言うは易く行うは難しいですが、意識的に構造化して思考を働かせ、今後も実践していきたいと考えています。

データ・アナリティクス入門

問題解決を加速するストーリー設計

問題解決の本質は? ストーリー設計は、問題解決に向けた重要な要素です。分析に取り組む前に、解決したい問題を明確にし、結論のイメージを持つことが必要です。これにより、分析のプロセスが円滑に進められます。 仮説思考で何を見る? 分析のプロセスには、仮説思考のステップがあります。まず目的を設定し、仮説を立て(多少外れても問題ありません)、データを収集して検証します。また、5つの視点を持つことが重要です。インパクト(どれだけ影響を与えるか)、ギャップ(違いを見つける)、トレンド(時間の中での変化)、ばらつき(分布を見極める)、パターン(法則性の有無)を確認します。アプローチは、グラフや数値、数式を活用して進めます。 学びの次の一歩は? 今後の学習においては、考えを言葉にする「言語化」や本質を見抜く力、自分ごと化が重要です。また、「ありたい姿」に向けてのチェックポイントとして、具体性や意義、挑戦性、現実性を考慮し、モチベーションを維持する仕組みを構築する必要があります。 役割と判断の秘訣は? 私に求められている役割は、販売全体の動向を注視し、適切な配分調整で営業利益を達成することです。さらに、働きやすい環境作りや各自が能力を向上できる環境整備を推進します。そして、上司や部下、社外の方々と積極的にコミュニケーションを取り、一方的に考えを固執せず、全体最適な観点で判断を行います。大局的な会社の方針や戦略、動向を踏まえた部門運営を明確に提示し、決断します。 現状改善の策は? 会社のDX推進プログラムにエントリーし、具体的な課題解決に取り組んでいます。例えば、Web関連の各種KPIを全社の目標と関連づけ、可視化することが求められています。これは、WebのKPIが達成されても営業利益が未達成となる現状を改善するための施策です。また、プロモーションを投資対効果で判断する仕組みが必要とされています。さらに、データを活用できる人材の育成も重要課題です。専門的な分析を行う人材と、日々の判断を容易にするためにデータを活用する人材を育成する方針です。 今後の学びはどう? 以上の取り組みを通じて、今後も必要なスキルの向上や新しい学びを続けていきます。

データ・アナリティクス入門

振り返りに潜む解決のヒント

問題解決の始め方は? 問題を解決するためには、まず「何が問題か」を明確にし、「どこで」発生しているのかを特定します。その上で、原因を分析し、解決策を考えて実行するという4つのステップ(What、Where、Why、How)を意識することが大切です。 状況把握のコツは? また、状況を整理するためのツールとして、3C(顧客、競合、自社)や4P(製品、価格、販売場所、宣伝)を活用する方法があります。これらのツールを用いると、事業の強みや改善すべき点がより具体的に見えてきます。 仮説は何故必要? 問題の原因をつかむには、一つの仮説に絞るのではなく複数の仮説を立てることが有効です。異なる視点から仮説を構築し、その後に実際のデータを収集して検証することで、問題を多角的に理解し、正確な解決策に結びつけることができます。 データはどう取得? データ収集においては、信頼できる情報源から、偏りのない意見を得る工夫が求められます。誰に、どのように質問するかを工夫し、整理したデータをもとに検証を進めることで、反論を排除しながら正確な分析が可能となります。 相談対応はどうする? 実際の業務では、他部署から「業務がうまくいかない」という相談を受けることがあります。そうしたときは、まず問題の所在を整理し、どこでどんな問題が発生しているのか、またその原因を明らかにします。そして、仮説を立てた上でデータ収集と検証を行い、説得力のある解決策を提案できるように心がけています。 体制強化はどう考える? 日常の業務において、問題解決の4ステップを意識的に実践し、仮説を立ててデータに基づいた検証を行うことで、より効果的なサポート体制を構築できると実感しています。また、3Cや4Pなどのツールを定期的に活用し、背景や業界の状況を把握しておくことも、今後の課題解決に大いに役立つと考えています。 振り返りの秘訣は? 最後に、解決策を実施した後は、その結果を振り返り、どのステップや仮説が効果的だったのかを検討することが重要です。これにより、次回の対応に向けた改善点を明確にし、継続的なスキル向上につなげることができると思います。

クリティカルシンキング入門

データを分解して得る新たな視点

データ分解で得られる新視点とは? データを分解することで事象の解像度が上がることを学びました。データを単なる数字として見るのではなく、一手間加えることで新たな視点が得られます。例えば、データをグラフ化したり、割合を計算してみたりすることで、より深く理解できることが多いです。 データをどう分けるべきか? データを分ける際には、定性的な仮説を持ち、複数の切り口から分解することが重要です。その際、MECE(もれなくダブりなく)の原則を活用すると効果的です。MECEを用いると、全体集合を部分に分ける(足し算)、事象を変数で分ける(かけ算/わり算)、あるいはプロセスで分けるという切り口が考えられます。 MECEの原則を実践するには? 私はこの概念を知ってはいましたが、実際に分解をする際にうまくできていないと感じていました。切り口についても感覚に頼っていましたが、言語化された切り口を示されたことで、今後はそれを指針にできるようになったと感じています。 営業成果への応用とは? 営業部門の成果の低迷や、良好な場合の要因を探るために、この手法が活用できると思います。プロセスで分解している部分はありますが、クライアントを特徴別に分けたり(足し算)、売上や利益率から分解する(かけ算/わり算)部分が不足していることに気づきました。これを行うことで、良い成果を上げた要因を特定し、勝ちパターンを見出すことができ、悪い時は修正ポイントを明確にして改善行動に役立てることができると思います。 人事課題の解析はどう役立つ? また、人事課題の検討においても、従業員をMECEで分解し、課題点を探ることで、解決策を考えるのに役立てることができると感じています。 実践のための初めの一歩は? 学んだことを実践に移すため、データの切り分けを実際に行う機会を持ちたいと考えています。現在、すぐに取り組むべき課題もいくつかありますが、データを全体的に捉えられていないものが多いです。まずはデータを集めることから始めなければなりません。そのために、どのようなデータが必要なのかを5W1Hを使って考え、それをMECEを用いて分解しようと考えています。

データ・アナリティクス入門

データで掴む!即効性のある仮説検証術

仮説の設定と共有はどうする? 「仮設の設定」 何が(what)、どこで(where)問題が発生しているのかという視点で考えることが求められます。その際、3Cや4Pのフレームワークを用いることで、網羅性を確保できます。自分自身の仮説を持つことも重要ですが、独りよがりにならないように、複数人で仮説を出し合うことが大切です。さまざまな視点で仮説を考えることで、より豊富な仮説を出すことができます。そして、その仮説がなぜ(Why)起こっているのかを考え、解決策(How)を導き出します。 仮説の検証はどのように行う? 「仮説の検証」 解決策(How)として妥当かどうかを検証する際には、立証したい仮説に偏ったデータ収集は避けます。他の仮説を立証するようなデータも含めて、客観的にデータを比較することが重要です。これにより、仮説の説得力が強まり、仮説から導き出される結論(意思決定)の実効性も高まります。どんな単位を使ってデータを比較するのかや、主張したい仮説をいかに端的に説明できるかを慎重に考える必要があります。 データ分析で何を重視する? 「仮説の共有」 特に組織においては、「問題解決の仮説」から導き出される「結論の仮説」を実行する際に、コミュニケーションの課題が発生します。自身の仮説を客観的に立証した上で、共有するための仮説を立てる必要があります。 自身の仕事の一つの課題として、ドライバーの待機時間の削減が挙げられます。得られたデータから平均値を算出し、標準偏差も計算します。そして、組織として持つべきKPI値(平均値・標準偏差)と比較します。そのうえで、KPI値未達の箇所(Where)に注目し、なぜ(Why)未達なのかを関係部門と数値を見ながら考えます。その後、仮説の設定(問題解決方法 How)を行います。 まずは、得られたデータから平均値と標準偏差を算出します。次に、得られた平均値が妥当なのかを標準偏差から検討します。標準偏差を悪化させている要因(外れ値)に注目し(Where)、なぜ外れ値が発生しているのかをプロジェクトメンバーと意見を交わして(Why)、直近で必要な対策(How)を考えます。

マーケティング入門

営業力を飛躍的に高める「顧客ニーズの捉え方」

ニーズ特定の重要性とは? 自身の営業活動に対して有益な内容だと痛感しています。 まず、ニーズの特定の重要性と難しさを強く感じています。ニーズを特定しなければならない重要性は理解しているものの、その特定が難しい理由が明確に言語化されている点が、自身の課題特定にとても役に立ちました。真のニーズを捉えられなければ、価格競争や的外れなプロモーションに陥ってしまいます。特に顧客自身が気づいていないため、単純な質問ではうまくいかない場合が多いです。一定水準の欲求が求められている場合、自身が何を+αで求めているのか説明するのは難しいです。 どのようにニーズを捉える? ニーズを捉える上での解決策として、顧客の気づいていない欲求を具体的に提示することが重要です。行動観察とデプスインタビューを組み合わせることで、お客様の思考や関心事をより深く理解することができます。 顧客ニーズに合ったネーミング 顧客ニーズを捉えた際の重要事項として、ネーミングが挙げられます。これは、顧客の関心どころを刺す表現を的確に選ぶということです。また、自社の強みを認識し、それを活用することも非常に重要です。 具体的な活用シーンを想定すべきか? この内容は、日々の営業活動において具体的な活用シーンが思い浮かびます。例えば、企業課題についての経営ディスカッションを行う際、自身がその企業が目指すべき場所や道のりを明確に持てているかどうかという問いかけが重要です。美容師がお客様に対して「こんな髪型が似合うだろう」という仮説を持つのと同じように、成果のイメージをお客様に明確に実感させる提案を行えるかどうかが鍵です。定量的な情報がベストですが、定性情報でも具体的なシーンをイメージできる事例を共有することが重要です。 業界の変化をどう把握する? さらに、業界の変化を踏まえて、お客様企業が今後どのような道筋に進むべきかの仮説を持つこともポイントです。業界動向の調査やお客様企業の市場環境の調査を行い、それに基づいた仮説を元にディスカッション機会を増やしていくことで、お客様の関心事に沿った仮説検証を行い、真のニーズを探索していけるようになります。

データ・アナリティクス入門

ナノ単科で挑む仮説の実践

仮説って何? ビジネス現場での仮説とは、ある論点に対する暫定的な答えを示すものであり、大きく「結論の仮説」と「問題解決の仮説」に分けられます。状況に応じて、過去・現在・未来それぞれで仮説の内容が変わる点も特徴です。 解決と結論は? 問題解決の仮説は、具体的な課題に対して原因を究明するためのものです。一方、結論の仮説は、たとえば新規事業においてある論点への暫定的な答えを示す際に用いられます。 4ステップの流れは? 問題解決のプロセスは、次の4つのステップで進めます。まず、Whatとして問題が何であるか、またその規模を把握します。次にWhere、すなわち問題の所在を特定します。その後Whyとして、なぜその問題が発生したのか原因を追及し、最後にHow、どのように対策すべきかを検討します。 仮説はどう練る? 仮説を立てる際には、決め打ちせず複数の仮説を考えることが重要です。異なる観点や組み合わせから仮説を立てることで、情報の扱いに網羅性が生まれ、柔軟な解決策を導く助けとなります。 現状把握は大事? 施策の検討では、すぐに解決策に飛びつかず、まずは現状を十分に把握することが求められます。たとえば、見込み顧客を効率的に集めたい場合、SEO対策やウェビナーをすぐに試みるのではなく、なぜ見込み顧客が増えないのか、実際に問い合わせをしてくれる顧客の層やニーズを確認した上で仮説を立て、ABテストなどで検証するプロセスが大切です。 営業仮説の効果は? また、営業面においても、現状の状況・業務上の問題・その影響、そして解決された場合のメリットを問い直すことで、仮説の思考は効果を発揮します。これは、営業メソッドであるSPINの各質問(状況質問、問題質問、示唆質問、解決質問)とも通じる考え方です。 顧客行動はどう見る? さらに、顧客の行動分析の際は、カスタマージャーニーマップを作成するにあたって、こちらの期待する行動ではなく、顧客のインタビューを通じた実際の行動パターンをデータ化・可視化し、どのステップで課題が生じているかを明確にすることが重要です。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

戦略思考入門

顧客視点で磨く、新たな価値提案への道

学び直す顧客価値と持続可能性 今週の学習では、「顧客価値」と「持続可能性」の重要性について再認識しました。特に、私はこれまで希少性や付加価値に注目してアイデアを考えていましたが、「顧客にとって本当に価値があるのか」という視点が欠けていることに気づきました。さらに、顧客視点で競合を特定するのは非常に難しい課題だと感じました。従来の市場だけでなく、デジタルトランスフォーメーション(DX)の進展により、全く異なる分野からの代替品が競合となる可能性もあります。このような環境の変化を捉えるためには、広範な市場にアンテナを張り巡らせ、常に最新の動向を把握することが必要だと学びました。この気づきを活かし、今後は顧客視点を意識した仮説検証を重ね、具体的な価値提案を磨いていきたいと思います。 SI業界における持続可能性の課題は? SI業界における「持続可能性」の重要性も改めて考えさせられました。特に、技術の進歩により、かつては差別化の要因となっていた技術やサービスが他社にも容易に模倣される現状に直面しています。この課題に対処するには、最新の技術を追い続けると同時に、既存の強みを活かした独自の価値提案を作り出す必要があると感じました。また、VRIO分析は非常に有用であり、まずは自社について実施してみたところ、組織の観点が弱いという課題を認識しました。今後はチームメンバーとともにVRIO分析を実施し、他の視点を取り入れることで新たな強みや未認識の課題を発見したいと考えています。 新技術導入のための戦略は? 自社のサービス開発の場面では、新技術を導入する際、その技術がただの流行ではなく、顧客にとって長期的な価値を生み出す持続可能な競争優位性を持っているかどうか、導入前にプロセスを強化したいと思います。また、新技術分野やDX活用事例など、日々の情報収集の重要性を再認識し、セミナーへの定期的な参加や業界レポートの読み込みを今後も心がけていきたいです。競合他社との差別化ポイントを明確にする取り組みを進め、VRIO分析で得られた洞察をもとに自社の競争優位性を高めるための改善策を検討していきます。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right