データ・アナリティクス入門

分解思考で掴む改善のチカラ

原因分析はどう進める? 原因の分析にあたっては、まずプロセスごとに分解し、確認することが大切だと感じました。特に「what/where/why/how」を意識し、まず「where」から入念に分析することで、その後の「why」や「how」の解像度が高まると理解しています。 A/Bテストってどうやる? また、A/Bテストが有効な手法であることを学びました。その際、検証する「要素」は極力少なくし、その他の条件は共通とすることで、スコープを狭めることが重要だと感じました。実際にアプリ上でプッシュ通知とバナーを用いたA/Bテストを実施した経験から、振り返ると「キーメッセージ」に差が生じてしまった点が課題として残りました。 ログイン改善は何が? さらに、アプリのログイン率向上を図るため、ログインに至るフローを細かく分解し、原因の追究を行いたいと考えています。特に、パスワード設定の箇所で離脱するユーザーが多いという仮説に基づき、検証からスタートする予定です。その後の改善策として、ユーザーインタビューやUIテストの実施を検討しています。

デザイン思考入門

本当の課題はユーザーの声にあり

導入の不安は何? AIなどの新しい技術を自社の業務に導入する際、最適な方法が明確でないことが多く、適当な仮説に頼るだけではユーザーのニーズを十分に捉えられず、導入がうまくいかない事例があると感じました。観察やインタビューを行い、ユーザーが直面している本当の課題を定義することが、根拠に基づいた施策の展開につながるのではないでしょうか。 事前準備は十分? ただし、観察やインタビューを最初に実施する際、聞く内容があらかじめ決まっていないと十分な情報が得られないのではないか、という懸念もあります。一方で、こちらが求める回答にユーザーを誘導してしまう危険性もあるため、フラットな立場でユーザーの本音を引き出し、客観的に分析するプロセスが不可欠だと考えます。 ユーザー視点は大事? 特に、共感を基盤とした課題定義の段階では、ユーザー中心の視点が非常に重要です。業務においては、新しい技術やソリューション自体に焦点が当たり、答えあたりの議論に陥りがちですが、常に解決すべきはユーザーの本質的な課題であることを念頭に置き、施策の検討を進めたいと思います。

デザイン思考入門

共感と洞察で切り拓く営業の極意

共感ってどう大切? 共感の大切さが一番印象に残りました。ユーザーの動作や発言に注目し、彼らの立場から本質的な課題を捉える観察力が必要だと感じました。また、誰がどのような状況でどんな課題に直面しているのかを明確にし、仮説に基づいた解決策を提供することの重要性も実感しました。 営業はどう変わる? BtoB向けの営業プロセスでは、自社商品やサービスの提供に留まらず、まずユーザーの課題を把握することが基本です。ユーザーの課題を観察し、仮説を立てながら顧客との検証を繰り返すことで、まだ気づかれていない本質的な問題にも気付くことができ、その結果、より効果的な営業活動(インサイト営業)につなげることができると感じました。 課題共有は必要? また、商談前に課題を共有する活動の重要性も印象に残りました。普段の業務においては、顧客サーベイやチームでのブレインストーミングを通じ、ユーザー視点の仮説を多々収集しています。その後、実際の検証結果をもとに、各メンバーが顧客との面談時の特性や仮説の内容を共有し、より質の高い対応策の検討へとつなげています。

アカウンティング入門

実例で感じる財務の魅力

ライブ配信の魅力は何? ライブ配信を通じた実例を交えたワークショップに参加し、これまで学んできたP/LとB/Sの知識がより深まったと実感しました。特に、取り上げられた企業の事例はイメージしやすく、各数値に対して仮説を立てながら検証するアプローチの重要性を再認識することができ、今後のビジネスプラン作成にも役立てたいと感じました。 真の課題はどこに? このワークショップで学んだ手法を活かして、改めて自社の財務3表を詳細に分析し、真の課題がどこにあるのかを明らかにしたいと思います。また、直近3年間の財務状況を振り返ることで、これまでどのような施策や対応が取られてきたのかを確認し、その知見を今後の改善に繋げる所存です。 予算編成で何が見える? さらに、本講座で紹介された参考図書の内容や動画の視聴を通じ、アカウンティングスキルを一層磨いていく予定です。現在は2025年度の予算編成が迫っていることもあり、足元の業績を丹念に分析し、予算の内容についても十分に考察することで、今後の会社の確かな成長を実感できるよう努めていきます。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

デザイン思考入門

暗黙知で切り拓く学びの未来

どうして暗黙知が重要? 観察を通して得られる暗黙知と、インタビューで収集する形式知という分類に非常に興味を持ちました。本人が気づいていない、または言語化が困難な潜在的な課題というものは意外と多く存在するため、実体験がそれらの発見に大いに役立つと改めて実感しました。 仮説を疑う意味は? また、仮説にとらわれず、フラットな視点で観察やインタビューを行うことで、本質に近い課題を発見できるというアプローチにも魅力を感じました。一般的なインサイトよりも、特定の具体的なインサイトに焦点を当て磨いていくことに価値があるという考えは、普遍性を求めすぎないデザイン思考の特徴ともいえます。 バランスはどのように? さらに、全体と個、暗黙知と形式知など、対照的な要素のバランスをどのように取るかという点にも大きな学びがありました。とらわれないというキーワードは、これまでの自分の発想とは異なるアプローチを意識する上で、非常に重要な考え方だと思います。未知のものや違うものに敏感になることで、より高い精度のデザイン思考が実現できると感じました。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

仮説力が拓くあなたの未来

仮説をどう検証する? 仮説を検討する際は、決め打ちせずに複数の仮説を出すことが大切です。加えて、それぞれの仮説が補完し合い、異なる視点からの切り口を持つことを意識しています。自分の知見や簡単な検索だけに頼らず、3Cや4P分析などのフレームワークを活用することで、より精度の高い仮説が構築できると改めて実感しました。 提案の鍵は何? また、担当しているお客様に提案を行う際には、企業が抱えるビジネス課題やそれに対してどのような提案が有効かを日々考えています。しかし、時間の制約からホームページや業界情報の簡単な調査だけで済んでしまうこともあるため、本講座で学んだフレームワークを活用し、複数の仮説を立てる基本に立ち返ることを意識しています。 問題解決の秘訣は? 特に、問題解決のための仮説設定プロセスが非常に有効であると感じました。問題は何か、問題の程度はどれほどか、どこに原因があるのか、なぜその問題が発生しているのか、そしてどう対応すべきかという一連のプロセスをしっかり分けることで、仮説思考をより深めることができると考えています。

データ・アナリティクス入門

論理で切り開く自分革命

状況整理の意義は? 直面している状況を具体的に整理し、何が問題なのかを明確にするプロセスが非常に役立ちました。特に、あるべき姿(To be)と現状(As is)のギャップを定量的なデータをもとに洗い出すことで、客観的に問題点を把握できるようになったと感じます。 課題の対処法は? 何から取り掛かるべきか迷ったときは、What(何が)、Where(どこで)、Why(なぜ)、How(どうやって)のステップを参考にすることで、論理的に整理しながら課題にアプローチできました。たとえば、収支の問題に直面した際は、売上と費用に分けてどこに課題があるのかを、ロジックツリーを活用して可視化する手法が有効でした。 学びや実感は? また、クライアントが提示する課題が本当に解決すべき問題であるかを見極めるために、内部の上位者とのディスカッションを通じて仮説を壁打ちする機会が持てたことは、より良い提案や新たな切り口を考える上で大いに学びとなりました。これらの経験は、問題解決の手法の幅を広げ、実務における対応力を高める大きな糧となっています。

データ・アナリティクス入門

問題発見力を鍛えよう!課題形成の基本

問題発見力を高めるには? 問題を発見し、その問題点を把握する力、すなわち問題発見力が重要です。ありたい姿と現状のギャップを見える化し、課題形成力を高める必要があります。現状を定量的・定性的に把握するためには、数値化や見える化が欠かせません。目的や仮説をイメージしつつ、行ったり来たりしながらも、ゴール目標に向けて時間軸を持って到達することが大切です。 採用市場で競争優位を得る方法は? 採用市場の変化においては、問題発見と課題形成のプロセスが重要です。この過程で優先度や重点化の思考を入れ、重要性や緊急性の観点からもデータを分析します。それによって、競合他社との優位性を評価しながら、効果的かつ先進的な人材獲得の取り組みを推進することができます。 幸せのため働く姿勢の意義は? 「誰かの幸せのために、まっすぐはたらく」という考え方を体現し、シンプル、オープン、フェアの観点から積極的に採用市場を分析します。将来の基幹人材の獲得を目的に、ゴール(6月)から逆算してセグメントごとの実行計画を立案・推進することが求められます。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right