クリティカルシンキング入門

仮説を超える確かな分析力

分析結果に対して疑問を持つ? 実践演習では、ある博物館のケースを題材に、大人の個人客の減少が主要な原因だと思い込んでいたところ、実際の分析で団体客も減少していることが分かりました。この結果から、すぐに決めつけるのではなく、細かい部分まで丁寧に検証する重要性を実感しました。さらに、グループワークでは参加者全員の意見を聞く中で、まずはどの数字や分析が必要かという全体の定義を明確にし、その上でどの切り口で数字を解釈していくかを考える大切さを改めて学びました。 業務での学びはどう活かす? また、日々の業務においても、単に数字を見るだけでなく、課題や要因についての分析を行う際は、まず切り口を考えた上で仮説を立てる方針を実践していきたいと思います。次に何かを考える際には、意識的に考えを文字に落とし込むことで、より明確なアプローチができると感じています。各自が行った企業分析を再度持ち寄るという方法も、さらなる学びの場として面白いと考えています。

クリティカルシンキング入門

課題解決力を磨く「具体的な問い」

どう問いを明確に? 物事を考える際、まずは「問い」を立て、それを明確にすることが重要です。この際、「問い」は具体的であり、数値を示すことで客観性が増し、仲間とイメージを共有しやすくなります。「問い」を常に持ち続け、決して外れないことも大切です。 展示会で何を問う? 展示会業務運営の問題解決においても、「主催者からのアンケートや施工会社からの提案に対してどのように答えるか」「どこで問題が発生しそうかの洗い出し」など、具体的な問いを立てることが求められます。また、営業企画業務の立案においても、「効果的な研修立案」や「マーケティングの立案」といった問いを持つことが挙げられます。 指示の背景は? 上司からの指示があった場合には、なぜその指示が出されたのか、その目的や背景、いつまでに完了すべきかを把握することが必要です。解決すべき課題について、まずは自分だけでなくチーム全体で問いを共有し、ズレがないよう確認しましょう。

クリティカルシンキング入門

一緒に探そう!抜け漏れゼロのデータ分析

どんな視点で見る? データを分析する際は、見る切り口によって見え方や分かる内容が変わるため、まずは様々な視点から状況を把握することが重要です。全体の傾向が見えた段階で、さらに細かい視点でデータを掘り下げ、分析を進めます。また、切り口に抜け漏れがないように設定することも求められます。 傾向はどう見抜く? 日々の物量の傾向を把握することで、必要な労働力(作業員や作業時間)を正確に計算できるようになります。業務改善を目的としたデータ分析では、どの作業がボトルネックとなっているのかを見極め、適切な改善アプローチの方向性を定めることが必要です。 抜け漏れはどう検証? 具体的な取り組みとしては、まず課題を漏れなく分解し、その状態を上司や同僚に確認します。もし抜け漏れがあればアドバイスを受け、補完の後、更に細かい分解を行うといったプロセスを実践しています。こうした取り組みは、MECEの考え方を意識しながら行う練習として効果的です。

データ・アナリティクス入門

実務に効く!仮説検証で問題解決

プロセスは何が鍵? このたびの学びでは、課題解決のプロセス「what→where→why→how」を通じて、特に原因分析(why)と打ち手の策定(how)の部分に焦点をあてることができました。各段階での具体的な方法が、実際のビジネスシーンにどう結びつくのかを理解できたのが印象的です。 原因はどう掘り下げる? 原因特定の手法として、プロセスを分解することで問題の要因を明確にし、深堀りするアプローチについて学びました。また、A/Bテストを用いる手法では、データの偏りを避けながら分析を行える点が、実務での効果的な検証手法として魅力的に映りました。 仮説はどう立てる? この経験をもとに、今後は仮説を立て、検証を行い、解決策を素早く導き出すサイクルを意識して業務に活かしていきたいと思います。 A/Bテストの知見は? なお、A/Bテストは現場で実際にどの程度利用されているのか、引き続き知見を深めていきたいと感じています。

クリティカルシンキング入門

データ分析の新しい視点で業務改善へ

グラフを活用したデータ分析の重要性 分析においては、数字だけを見ずにグラフにするなど、視点を変えることが重要です。絶対値だけでなく比率などの相対値も分析し、複数の区切り方や切り口でデータを分解したうえで、それらを複合させて検討する必要があります。これらを怠ると、正しい課題や仮説にたどり着かない可能性が高くなります。 新たな視点の必要性とは? 私は、自身の業務において組織や顧客のデータから傾向や課題を分析する際に、複数の区切り方や切り口を見直していないことがあると感じています。そのため、これまでの区切り方や切り口以外に、何か新しい視点がないかを改めて考えてみたいと思います。 定例会議での効果的な課題分析法 現在、月に一度の定例会議で自社と取引先企業との間で課題の分析と対応策を議論しています。分析は自社で行うため、データの区切り方や切り口、グラフの見せ方を再検討し、仮説を誤らないように資料全体を見直すことが必要です。

データ・アナリティクス入門

実践で磨く!データ活用のヒント

学びはどんな感じ? これまでの学習を通じて、データ分析の基礎から実践的な活用方法まで、一連の流れを体系的に学ぶことができました。単なるデータ処理にとどまらず、どのように課題を設定し、仮説を立て、検証するかという思考プロセスの重要性を改めて実感しました。 重要な点は何? 学習内容を振り返る中で、自分にとって重要なポイントを再確認することができました。今後は、業務の提案文書作成時に、分析を活用して根拠を明確に示す取り組みを進めたいと考えています。また、日頃から目にするデータがどのように役立つかを意識する習慣を身に付けたいと思います。 次への一歩は? さらに、知識の定着を図るため、学習を終わらせずに統計検定の取得を目指すとともに、業務での分析においては各種フレームワークを適用し、実践で活かしていきます。具体的には、営業店の業務負荷の要因分析を実施し、仮説を立ててデータに基づく検証を行いたいと考えています。

クリティカルシンキング入門

アウトプットで未来を拓く

宣言的アウトプットはどう活かす? 学んだ内容が無駄にならないためには、宣言的にアウトプットすることが非常に大切だと感じました。これにより、これまでの学びを再認識する良い機会となり、今後どのように活かしていくのかという具体的な方策について、ゲイルでの回答から意識することができました。また、期限に関するアウトプットが不足していた点を再認識する結果となりました。 振り返りは何のために? 振り返りの重要性も改めて認識しました。学習した内容を振り返り、現在の業務にどう適用するかを明確にすることは、プロジェクトチームや部下と共有する上で非常に有益だと思います。プロジェクトでは、クロージングとして実績と課題を共に整理し、今後の活用を期限を設けた形で具体的に検討することを想定しています。一方、評価面談などでは、これまで達成してきたことと、今後求められる行動や活用がどうあるべきかを意識させる場として取り組んでいきたいと考えています。

データ・アナリティクス入門

仮説思考で変わるサポートの未来

仮説思考は何が変わる? 仮説思考を学ぶことで、業務に対する課題意識がより明確になったと感じました。単に仕事をこなすのではなく、仮説をもとにトライアンドエラーを重ねることで、目的に一歩ずつ近づけるという実感が得られました。 サポート満足の理由は? 現在の課題として、クライアントのサポートに対する満足度が低い原因は、製品の不具合ではなく、返信までに要するリアクション時間やサポートサイトの分かりにくさにあるとの仮説を立てました。この課題に対して、改善策を検討し実施していく決意です。 フィードバック改善案は? また、クライアントからのサポートフィードバックを年に一度にとどめず、より頻繁に意見をいただけるようにすることで、現状の把握と対応の質を向上させたいと考えています。問い合わせが多い項目については、サポートサイトを見直しアップデートするほか、検索しやすいキーワードの設定も改め、利用しやすい環境の整備を目指します。

クリティカルシンキング入門

ピラミッド構造で極める伝達力

どうして文章が難しい? 「相手に伝える文章を書く」という課題は、非常に骨が折れるものでした。 整理すると何が見える? 伝えたいことを段階的に整理し、結論・根拠・なぜならという要素に分解することで、自分の思考を客観的に整理できる点が非常に魅力的でした。 組み立ての秘訣は? いわゆるビジネス文章は、ただ筆を進めるだけで書かれるものではなく、図やピラミッドストラクチャーを用いて組み立てることで、シンプルで分かりやすい構成が可能になると感じました。 業務にどう応用する? 実際の業務においても、この考え方は大いに役立っています。特に、関係各所への説明責任が求められる状況では、各所の状況や要求事項を整理して発信することが重要です。 今後の展望は? 今後は、ピラミッドストラクチャーの整理方法を日常的に活用し、ビジネスメールの作成においても、結論に対して適切な根拠を示すよう意識していこうと考えています。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

目指す姿とのギャップを分析

手法活用はどうする? 5W1Hや層別分解の手法は知識として持っていましたが、実際の業務では目の前の課題にとらわれやすいと感じています。今後は、これらの手法を意識的に取り入れ、より体系的な分析を実施したいと思います。 理想との違いは何? また、分析を行う際には現状とあるべき姿とのマイナス差に注目することが多かったことから、目指す姿とのギャップに関する分析が不足していると感じました。今後は、理想との比較も含め、より実践的な分析に活かしていきたいと考えています。 計測軸は見直すべき? 各部門の工数実績を分析する中で、計測軸をMECEの観点から整備するためにその他の軸も設けています。しかし、全体の一定割合が「その他」に分類されていることから、課題の見落としが発生する可能性があります。このため、計測軸の見直しを行うとともに、現状のあるべき姿との比較だけでなく、目指す姿に対する分析も加えて実施していく所存です。

クリティカルシンキング入門

問い続けて未来を変える

なぜ目的を重視する? 常に目的を意識し、自分の思考の癖を理解するとともに、問い続けることの重要性を学びました。これまでは、自身の経験則に頼り、安易な解決策に走っていた点に気付かされました。今後は、問題の本質を的確に捉える思考力を身につけたいと考えています。 組織会議はどう整理? 半期ごとに担当する組織のアクションプランを作成する際は、現状、課題、対策を論理的に整理し、より成果に直結するプラン作りを心掛けていきます。また、社内会議においても、問題の核心を正確に把握し、適切な提案ができるよう努めていきたいと思います。 なぜ毎日問いかける? さらに、日常生活においても「なぜ、何のために」という問い掛けを習慣づけ、常に深く考える姿勢を実践していきます。加えて、毎週確実にインプットの時間を確保し、学んだ知識を業務で実践するアウトプットを行い、上司や同僚からのフィードバックも受けながら成長を続けていく所存です。
AIコーチング導線バナー

「業務 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right