データ・アナリティクス入門

数字で紡ぐ学びのストーリー

数字に基づく検証は? 分析は、ただの偶然や直感に頼るのではなく、数字の根拠をしっかりと確認した上でストーリーを構築することが大切です。まずは、何が言いたいのか、どこを重点的に見るべきかを整理し、その順序(What⇒Where⇒Why⇒How)に沿って傾向を明確にしていきます。 どんな原因が考えられる? また、考えられる原因を幅広く洗い出し、特に可能性が高い仮説についてはしっかりと検証する必要があります。平均値を見る際には、その数値のばらつきにも注意を払い、全体像を把握するよう努めます。 データの可視化はどう? さらに、データを視覚的に表現することは非常に効果的です。ヒストグラム、円グラフ、棒グラフなど、データの種類に応じて最適な図表を瞬時に選び出し、形にするスキルが求められます。数字だけのデータでは、何が言いたいのか、どこに課題があるのかを直感的に伝えることが難しいため、ビジュアル化が大きな武器となります。

データ・アナリティクス入門

小さな気づき、大きな成長への道

ABテストの条件は? ABテストでは、条件を揃えることの重要性を改めて認識しました。web広告の出稿時、期間は統一していたものの、画像やメッセージなどの要素がバラバラになっていた点は反省材料です。5パターンから2パターンに絞ったときに優位差が出なかったことから、最初から2パターンで検証すればよかったと感じました。今後は、各条件をしっかりとそろえることを最優先に、広告出稿に臨みます。 部下の進捗状況は? 初めてプロジェクトマネジメントに取り組む部下が、全体像の把握に苦労している様子が見受けられます。全体スケジュール表を提出させても、個々の業務に追われ、検討した案を1週間放置してしまうケースが発生し、本人も周囲も内容を忘れてしまったため、再び考え直す必要が生じています。この状況がプロジェクト全体の進捗に影響しているため、今後はプロセスの各段階を理解することを重点的に指導し、円滑な進行を目指していきたいと思います。

マーケティング入門

顧客視点の再評価が生む新風

ターゲット再検証は? 商品のターゲットを見直すことで、新たな価値が生まれる可能性を学びました。特に、心理的変数は時代とともに変化するため、価値を再評価する上で有効な切り口であると実感しました。 マップの違いは? また、ポジショニングマップとパーセプションマップの違いについて理解を深め、顧客目線がいかに大切かを再認識することができました。 事業見直しはどう? 自社の事業を振り返る際は、まず特徴を洗い出して訴求ポイントを整理することから始めました。その上で、どこにポジショニングを置くべきか検討し、注力している事業に問題がないかを確認しています。さらに、顧客へのヒアリングを通じて、自社の伝えたいポジションがしっかり伝わっているかどうかをチェックしていきます。 システムに期待は? また、時間に余裕があれば、システム会社に対してどのような期待を持っているのか、直接伺ってみたいと考えています。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

マーケティング入門

顧客視点での革新:実践で得たフレームワークの力

顧客目線を忘れないためには? 顧客目線であることは、企業活動として当然のことであると思えますが、競合を意識するあまり、顧客ニーズを無視してしまうことがしばしばあります。そのため、適正なフレームワークの使い方を学び、常に高い視点で物事を捉える術を養いたいと考えています。 顧客との対話が生む成果とは? 自身の取り扱う製品が顧客にとってどのようなベネフィットがあるのか、競合品との差別化が顧客ニーズを満たしているのかを検証するために、実際に顧客と対話を重ねます。また、メッセージが顧客にどれだけ響いているのかも再確認します。 イノベーション課題を解決するには? イノベーションの普及要件として比較優位、適合性、わかりやすさ、試用可能性、可視性の観点で自社の製品を考えてみると、比較優位と試用可能性、可視性はあるが、わかりやすさと適合性が課題であると認識しました。これらの課題をどう解決するかを検討する必要があります。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

A/Bテストで売上向上へ、新たな一歩

仮説検証の重要性を再確認 段階を踏んで仮説検証を進める重要性を改めて認識しました。また、A/Bテストという手法についてこれまで全く知らなかったため、新しい分析方法として今後積極的に活用したいと考えています。 A/Bテストの効果的な活用法は? 売上向上の施策に対しても、効果検証としてA/Bテストを用いてみたいと思います。これまで効果検証自体は実施していましたが、異なる施策を同時に行ったことはありませんでした。今後は実施できる事案を含め、慎重に検討していく予定です。 情報共有と承認のステップ まず、1か月以内に従来の施策とA/Bテストによる効果検証の違い、メリット・デメリットに関して部長会で情報共有を行う予定です。その際、A/Bテストが実施できそうな事案についても紹介し、従来法では得られない効果まで説明します。実施に対する承認を得た後は、来期の1Q内に実務担当者と協力し、テストを実施する予定です。

クリティカルシンキング入門

データ分析が変わる!MECEの魅力発見

データ分析は何が肝心? データを分析する際、「分解」する視点や切り口によって得られる情報が大きく異なることに気づきました。表面的な情報で安易に判断せず、多角的な視点からデータを分析し、十分に検証することの重要性を認識することができました。 要因の背景はどう検証? たとえば、離職率の原因を調査する際には、年齢や勤続年数、部署、職位などの要素をMECEに分けて分析することで、特定の要因や傾向を見つけやすくなります。さらに、背景や理由を深く掘り下げることで、適切な予防策を講じることが可能になると考えています。 分解で見えているものは? まずは、自分自身でデータを加工・分解することで、データ分析に慣れていきたいと思います。データを扱う際にはMECEを意識し、さまざまな視点から分析を行うことを心がけます。また、そこから導き出した仮説については、他の視点からも確からしいかを検証する姿勢を持ちたいと考えています。

戦略思考入門

顧客視点で探る差別化のヒント

本当の顧客は誰? 顧客が誰であるかをまず明確にすることが重要だと感じました。ターゲットをはっきりさせることで、どのような判断軸で物事を進めるかが明確になり、日常の中で見落としがちな点にも気づくことができるという印象を受けました。 価値はどう伝える? また、顧客の視点から価値を提供できるかどうかを考え、実現可能性や持続可能性を検証することの大切さも実感しました。具体的には、どのような施策が自社にとって独自性を持ち、他社との差別化につながるか、そのために自社の強みを整理することが必要だと考えます。 VRIOで差を見極め? さらに、差別化の手法としてVRIOのフレームワーク(価値、希少性、模倣困難性、そして組織の活用能力)を活用する点も非常に参考になりました。このフレームワークに基づいて施策を検討することで、提供する価値を一層明確にし、具体的かつ効果的なアイデアに結びつけることができると実感しています。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

クリティカルシンキング入門

多角的視点で探る数字の裏話

数字はどう見える? 数字の分析では、単に数値をそのまま解釈するのではなく、多角的に検証することの重要性を実感しました。MECEの観点から数字を整理・分析することで、現状を正確に把握できるだけでなく、結論に至った理由や背景も明確になると学んだからです。 意見共有はどうする? また、さまざまな立場の人と意見交換する際、分析した数字を根拠として現状を共有することは、認識の齟齬を防ぐうえで大切だと感じました。たとえば、次の企画を提案する際、「なぜこの企画を行うべきなのか」を過去の実績や傾向を基に説明すれば、相手に納得感を持ってもらいやすく、スムーズにアクションへとつなげることができると思います。 議論の進め方は? そのため、事前準備として過去の実績数値をMECEの視点で整理し、どのポジションや役割のメンバーであっても理解できるよう、複数の角度からの分析結果を基に議論を進める姿勢を大切にしたいと感じました。
AIコーチング導線バナー

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right