データ・アナリティクス入門

ITシステム導入の効果を比較で検証!

分析で大切な比較の本質とは? 今回の学習を通じて、以下の重要なポイントに改めて気付きを得ました。 まず、分析の本質は比較にあることです。ある場合とない場合を比較する、いわゆる「Apple to Apple」の比較が重要です。また、分析に入る前に仮説を立てることが大切であり、目的を明確にすることが求められます。具体的には「何を見たいのか」「何が見えるのか」を明確にすることが重要です。さらに、グラフを活用して視覚的に捉えやすくすることも効果的です。 ITシステム導入の比較ポイントは? これらのポイントを念頭において、バックオフィスにおけるITシステム導入の検討を進める際には、以下の点を意識して比較を行いたいと考えます。 まず、「何のために比較するのか」を明確にし、導入した場合としなかった場合の効率面やコストを具体的に、定量・定性データで比較することが必要です。何を見たいのかを明確にし、複数社での比較を実施することが大切です。また、場面によっては仮説を立てて進めていくことも考慮すべきです。 導入効果をどう検証する? 具体的には、人事系システム導入に向けて、まずは社労士などのスペシャリストからの助言を参考にしつつ、導入の目的自体を明確にします。次に複数社での比較を実施し、導入した場合としなかった場合の検証を行います。この視点で検討を進めていきたいと思います。

データ・アナリティクス入門

採用戦略をロジックツリーで深掘りしてみた結果

ロジックツリーで何を明確にする? ロジックツリーの分析を通じて、様々な視点や要素から分類・分析を行うことで、因果関係を明確にすることができます。これにより、ありたい姿と現状のギャップを把握し、解決策を見つけることが容易になります。このギャップには、将来の目標から逆算する方法と、現状を正常に近づけるための逆算方法の2種類があります。問題定義(WHAT)からスタートすることが重要です。 採用戦略に新たな要素を加えるには? 私は新卒採用を担当しており、学校推薦応募と自由応募のメリット・デメリットを定量的および定性的に、大学別や専攻学科別に分析しています。それにより、他社と競争優位性のある採用戦略に新たな要素を加えたいと思っています。併せて、基盤となる戦略をさらに強化し、優位性を維持できるように取り組んでいます。 MECEで施策の現状をどう確認する? まず、前年の施策が現状の採用市場の変化に対応しているかをMECE(Mutually Exclusive, Collectively Exhaustive)に当てはめて検証します。これにより、重複や抜け漏れがないかを確認することができます。次に、課題解決施策をリストアップし、ロジックツリーの考え方に基づいて効果的な施策を優先順位付けします。そうすることで、計画達成に向けた取り組みを効率的に進めることができます。

データ・アナリティクス入門

データ分析で意思決定を劇的に改善!

データ分析の重要性は? 「データ分析は意思決定の手段であり、意思決定を効率的に実現するための重要な用途である」と改めて認識しました。特に「整理」し、「比較対象を具体的に」することの重要性を学びました。ものごとを「具体的に」し、「はっきりさせる」ことで、より良い意思決定に役立てることができます。このプロセスを通じて、各要素の性質や構造を細かい点まで明確にすることが肝要です。 目的を持って分析を始めるには? 基本は「目的をもって分析をする」ことです。データから得られる知見があるため、目的を明確にせずデータを加工し始めてしまうことがありましたが、この点は意識して改善していきたいと思います。 BPRを進める秘訣とは? また、BPR(業務プロセス再構築)を進めるには、関係各所のコンセンサスが重要です。関係者が納得し、了承を得られるような説明が重要であり、定量的なデータから重要要素を可視化し、客観的な根拠を元に合意形成までのプロセスを改善することが求められます。 新たな視点を持つために必要なことは? 学んだ内容をもとに実務で実践し、どのような分析・資料が効果的であるかを把握し、習得していきたいと思います。また、自分自身の考え方の癖や偏りを矯正し、柔軟な視点を持てるようにするために、グループディスカッションを通して多くの視点や考え方を吸収していきたいです。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

理想と現実、ギャップを超える力

合意形成はどう進める? 問題解決に取り組む際は、まず「理想のあるべき姿」と現状とのギャップを整理することが重要です。表面的に見つかった問題をそのまま解決していくのは、時には運に任せる側面があり、必ずしも大きな影響を与える要因とはなりません。そのため、まずは現場の関係者と「理想のあるべき姿」についてしっかりと合意形成を図ります。もし現場側に理想がなければ、関係者と共に理想の策定に取り組む必要があります。 目標設定は本当に明確? 自身の業務においては、現場で設定される各部門の達成目標=理想を出発点とし、そこから現状とのギャップを明確に報告する役割があります。しかし、現実には現場で理想が設定されていなかったり、目標が曖昧である場合が多く、部署として理想について十分に把握できず、ギャップを正確に報告できていない現状があります。 理想共有はどうやる? このため、まず現場の「理想」を共有し、正確に把握することが重要です。もし、現場側で理想が不明確であれば、定量的な目標の設定を提案し、協力して策定することが必要です。次に、現場の理想と実際の状況との間に存在するギャップをしっかりと報告するステップに移ります。 連携で成果は得られる? 以上のプロセスを実践することで、現場と部署が連携し、理想に近づくための効果的な問題解決が進むと感じています。

戦略思考入門

生産性向上のための取捨選択の極意

事実と推計の評価は? 取捨選択を考える際は、多角的に評価することが重要であり、それに対する重みづけも大切です。評価を行う際には、実際の事実を集めることが最も効果的ですが、信頼できる推計を利用することも有効な手段です。経験を積むことで、適切な生産性の判断ができるようになりたいと考えています。また、定量的な視点に限定されず、経緯など定性的な視点からの補足も有効です。捨てるためには、事前の準備が重要であると感じました。最終的には「判断」であり、学びをいかに使いこなすかは自分次第です。 不要業務の見極めは? 我々の組織においては、「やらなくていいこと」はあまり多くないと気付かされました。つまり、IT部門が行わず他部署や社外に引き渡すことが「やらなくていいこと」に該当すると考えられます。突発案件も含め、必要に応じて業務を放棄するという選択肢を用いて、現場の負荷を一定範囲内でコントロールしたいと思います。 優先順位はどう決める? 業務の優先順位を評価するために、いくつかの基準を定めることが必要です。まず、現状の業務を重要性、領域、役割などで大まかに層別します。そして、層別したグループごとに評価し、優先順位をつけます。この際、優先度の低いグループについては、廃止やアウトソース、他部署への引き渡しといった方針を立てておくことも考えに入れます。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

数字でひもとく学びの魅力

講義の要点は見えてる? 今回の講義を通じ、問題解決プロセスにおいて重要なポイントを再認識しました。特に、あるべき姿と現状の間にあるギャップを具体的な数字で示し、関係者全員で合意を取る必要性を強く感じました。定量的に現状とあるべき姿を比較することで、解決策の効果を明確に把握することができると実感しました。 MECEの意味って何? また、MECEのとらえ方についても改めて考える機会となりました。意味のある分類方法を意識し、意図しない「その他」に頼らず、明確な目的意識を持って分類することの重要性を学びました。これにより、情報の整理がより具体的で理解しやすくなると感じています。 分類にはどんな工夫? さらに、自社サービスのポジションや方針を決める際、特にB2B2Cの業務モデルにおいては、顧客自身とエンドユーザーの双方をMECEに基づいて分類する必要があると再認識しました。具体的には、顧客規模や産業、予算状況といった基準で顧客を分類し、エンドユーザーについては年齢、性別、アプリの利用状況などを考慮することが大切です。 投資の判断はどうする? 以上の学びをもとに、現状とあるべき姿のギャップを明確にし、自社のリソースが十分に機能しているか、あるいはどの程度の投資が必要かを判断するための貴重な材料としたいと考えています。

データ・アナリティクス入門

4ステップで掴む課題解決の秘訣

4ステップを理解? 今週は、問題解決の4ステップ「What(何が問題か?)」「Where(どこに問題があるか?)」「Why(なぜ問題が起きているのか?)」「How(どうするか?)」を学びました。これにより、問題を定量化し、範囲を絞り、原因を分析して具体的な解決策を導くという、論理的な課題整理の手法が実践的に理解できました。 ロジックツリーの効果? また、ロジックツリーの活用法も学び、問題を「モレなく・ダブリなく(MECE)」分解する方法が、構造的な分類や深掘りにとても役立つと感じました。現場での意思決定や具体的な課題整理に、この手法を応用できる点が印象的でした。 企画立案のコツは? 企画の立案時には、問題解決の4ステップを活用し、過去と未来の問題に分けて検討することで、理想の状態を明確にし、提案が本質から外れないよう注意することができると実感しました。加えて、アイデア出しの際にロジックツリーを用いることで、問題を細かく整理し、深い考察が可能になる点も大きな学びでした。 実行前に再確認? 思いついた企画をすぐに実行に移すのではなく、一度立ち止まって問題解決のステップを確認すること、そして企画が進行している段階でも都度、本来あるべき状態と現状のギャップを再確認することの重要性を感じました。

データ・アナリティクス入門

ギャップを埋める数字の魔法

何が問題なの? 問題解決に取り組む際、まずは「何が問題か」「どこで問題が発生しているか」「なぜその問題が生じたのか」といった基本的なステップを意識することの大切さを実感しました。特に、課題と目指す姿とのギャップを数値で示すことで、頭の中で漠然と把握しているだけでなく、実際にどれほどの差があるかを具体的に明らかにできる点に強く共感しています。この手法は、他者に説明する際にも説得力があり、問題の重要性を再確認する良い手段だと感じました。また、従来の「あるべき姿」と現状のギャップだけでなく、未来の「ありたい姿」との比較にも目を向け、より具体的な分析とアクションに結び付けていきたいと思います。 分析の新たな視点は? 日々のビジネス分析においては、客数や単価のどちらに課題が潜んでいるのかを正確に把握することが重要です。これまで、パターン化された切り口での分析に偏りがあったため、異なる視点からの分析の必要性を感じるようになりました。また、分析手法としては、層別分解や変数分解を意識したMECEの考え方を活用し、情報の抜けや重複がないかを継続的に確認することが不可欠です。今後は、定性・定量の両面から「あるべき姿」を具体的に数値化し、現状とのギャップを明確にすることで、より効果的な課題解決に取り組んでいきたいと考えています。

データ・アナリティクス入門

データで紡ぐ成長の物語

データ整理は安心? データの切り出し方について、以前は数字が欲しいならこれといった感覚で扱っていたため、具体的に整理する作業が非常に有意義でした。成長率の求め方についても久しぶりに見直し、これまで間違った計算方法を用いていたことに気づけたのは大きな収穫です。 分布分析の効果は? 定量分析の手法として、代表値と分布に注目し、データをビジュアル化してより理解しやすくする方法を学びました。平均値が外れ値の影響を受けやすいという点に加え、単純平均、加重平均、幾何平均、中央値といった代表値や、標準偏差を用いた散らばりの把握、さらにはヒストグラムでばらつきを表現するテクニックが印象に残りました。 データ活用の秘訣は? また、ECにおける購入者分析や売上、アクセス解析にこの知識を活かせると感じました。特に、複数の商材を取り扱う場合のデータ集計処理について、最終的に求める数値や、それをどのようにビジュアル化すれば良いのかを意識したデータ分析ができるようになりました。 感覚から論拠に? これまで感覚的に行っていたデータ処理について、なぜその手法を用いるのかを説明できるようになり、自信がつきました。今後は月次のアクセス状況の説明にも、より論拠をもって提案し、販売方針や経営判断に結びつけていければと考えています。
AIコーチング導線バナー

「定量 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right