データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

データ・アナリティクス入門

分析目的を明確に!データ活用の極意

分析の目的設定はなぜ重要? 「分析とは比較なり」が今回の講義の究極のゴールであるが、それだけでは不十分である。分析の目的をしっかり設定し、自分なりに仮説を立て、それに必要なデータを用意することが重要だ。また、適したグラフを選ぶことも必要である。 結果を伝えるための見せ方とは? 分析の目的を念頭に置きつつ、最終的にはデータ分析を基に説明や説得を行うため、見せ方にも気を配る必要があると感じた。 データ分析の活用方法は? 現在、保証契約のデータを分析している。目的は、経営陣に過去の実績を報告することと、顧客に実績を示すパンフレットを作成することである。それぞれの目的を追求すると、保証契約制度を推進する施策の検討や実績アピールによる利用促進が考えられる。これらの目的を念頭に、どのデータを分析すべきか、どう表現すべきかを考えることが大切だ。 記憶に残る工夫はどうする? 目的に立ち返ることを忘れないようにしたい。具体的には、PCの壁紙や手帳など、日常的に目にするものに「分析とは比較なり」と記入しておき、記憶のフックを作りたいと思う。

戦略思考入門

実践で磨く!経営戦略の切り札

理論と実践のギャップは何か? 総合演習を通じて、座学で学んだことを実践することの難しさを改めて感じました。理論的には理解しているつもりでも、実際のケースに適用しようとすると上手くいかないことがあります。例えば、タクシー会社のケースではPEST分析を試みましたが、そのスケールの大きさからこのケースには適していないと感じました。その結果、もやもやとした感覚が残りました。 分析を活用する方法とは? 現在、私は出向中の現地法人において市場環境を調査し、分析を進めています。そして、これに基づいた明確な経営戦略や営業戦略の立案が有効であると考えています。また、SI事業に関わっている関係で、規模の経済をどのように活用するかについて再考し、企業の利益体質を強化したいと思っています。 効果的な戦略立案に向けて すでにVRIO分析を行ってその有用性を実感しましたので、今後の経営戦略や営業戦略の立案には3C分析やSWOT分析を実務に活用したいと考えています。現在、会議用の資料を作成中であり、これらの分析手法を直近の実務で是非活かしたいと思っています。

リーダーシップ・キャリアビジョン入門

ハーズバーグ理論でやる気スイッチ探索!

ハーズバーグ理論は何? ハーズバーグの動機付け・衛生理論について初めて学びました。人々のモチベーションを向上させるためには、衛生要因と動機づけ要因の両方が満たされる必要がある、というこの理論を今後の考察に活用していきたいと思います。また、人の気持ちを完全に理解することは難しいとしても、相手と向き合い、理解しようとする姿勢が非常に重要であると感じました。 部下のやる気はどう? さらに、様々な視点からアプローチし、それぞれの人のやる気スイッチを探し当てることが現実的だとも感じました。しかし、たくさんの部下を抱えている場合、その全てに対して効果的な方法を模索できる上司がどれほどいるのかを考えると、難しいと感じることもあります。 効果的な連携は? これまでは、プロジェクト内で気になるメンバーに対して様々なアプローチを試みてきましたが、今後はハーズバーグの理論を念頭に置き、より精度の高いアプローチを心掛けたいと思います。また、他の関係者と情報や状況を共有し、連携を図りながらそのメンバーに関わっていくことが重要だと考えています。

アカウンティング入門

効率的なアウトプット実現の秘訣

ミッションと利益の均衡は? 営業利益や特別利益・損失についての意味を再確認し、ビジネスにおけるミッションと利益のバランスの重要性を学びました。これにより、自分の業務におけるミッションとアウトプット(利益)拡大の必要性について考える機会を得ました。 連携研究の価値はどう? 私は製薬企業の研究者として、創薬研究の一部を担当しています。創薬研究は薬理研究者、化学研究者、安全性研究者など多くの専門家が連携して進められ、各部署がタイムリーに成果を出すことが求められます。そのため、一定の経費を活用しつつ、迅速にアウトプットを出す方法を模索しています。 外部協力と効率化は? 一人でできる作業には限りがあるため、CROなどの外部リソースを積極的に活用して効率的にアウトプットを出すことが重要です。また、時間のかかる業務の効率化にも取り組んでいます。例えば、子会社の研究員に頼める業務は依頼し、その分の時間を他の重要なタスクに振り向けるようにしています。さらに、定型業務についてはテンプレートファイルや簡単なマニュアルを作成し、効率化を図っています。

アカウンティング入門

財務分析で道を拓く!経営戦略の新視点

貸借対照表の読み方とは? アキコとミノルの例から、貸借対照表の借方が集めた資金の使い途を示し、貸方が資金調達の方法を示すことを理解しました。これらは業種や経営方針と深く関連しており、企業ごとに異なる特色が反映されています。したがって、業種との比較を通じて経営方針を確認し、企業の貸借対照表(BS)や損益計算書(PL)が適切かを見極めることが重要です。 経営戦略の評価方法は? まず、自社のBSとPLをしっかりと読み解く必要があります。そして、競合他社との比較も行い、自社の経営戦略の妥当性を評価したいと考えています。特に弊社では、ROAとROEの改善が求められているため、それに基づいた議論ができるよう、BSやPLの分析力を高めたいです。 会計知識をどう補完する? そのために、自社のBSとPLを確認し、情報を整理していきます。理解が深まらない箇所や疑問点については、ChatGPTを活用しながら内容を把握するように努めます。また、さらなる理解を求めて自分で会計の書籍を読むことや、グロービスのオンライン講座で知識を補完していく予定です。

データ・アナリティクス入門

全体像に迫る!データ活用の新視点

全体像を掴めた? 今週は、これまで学んできた内容の総括を行い、全体像を整理することができました。特に、さまざまなフレームワークを学ぶ中で、データ分析への応用という視点が十分に考慮されていなかったと感じ、その応用方法を学べたことは大きな成果となりました。 解決プロセスは? 問題解決のステップや、各ステップにおけるプロセスの分解など、これらのフレームワークがMECEの実践には欠かせない要素であることを実感しました。今後は、これらの点を念頭に置いて取り組んでいきたいと考えています。また、仮説設定については、あくまで切り口として捉え、仮説の実証に固執しない姿勢を大切にしていく所存です。 データ活用はどう? さらに、日常的に触れるデータを活用し、各フレームワークを自分の中に定着させるためには、意識的な実践の場が必要であると感じました。そのため、普段の業務はもとより、オープンデータを活用して実践できる環境づくりに取り組むつもりです。具体的には、新たな講座への受講や社内での勉強会の企画などを通じて、さらなるスキルの向上を目指します。

データ・アナリティクス入門

理想と現実をつなぐ論理ツリーの魔法

ギャップをどう認識する? 問題解決の4ステップのうち、特に「What」に注目し、あるべき姿と実際のギャップを定量的な指標(戻り作業件数、作業にかかった工数、提案件数など)で明確に合意することの重要性を学びました。また、原因分析ではロジックツリーを活用し、検討内容を「もれなく、ダブりなく」分けながら視覚化する方法についても理解が深まりました。 議論の進め方はどうする? 議論に先立ち、まずメンバー全員で各ステップやロジックツリーの使い方を確認することで、効率的な打合せの進行が期待できると感じました。たとえば、自グループの課題を「あるべき姿に届いていない事柄」と「ありたい姿に到達させたい事柄」に分け、さらに緊急度や重要度の観点で項目を設定し、課題をリストアップします。その後、部門の評価基準に沿ってグループ化・絞り込みを行うことで、議論の視野が広がり、参加メンバーの納得度も向上すると考えています。さらに、年間のグループ目標設定時に、ロジックツリーを用いた項目分けも取り入れ、数多くある課題の中から重点項目を絞り込む議論の場を設ける予定です。

データ・アナリティクス入門

複数仮説で説得力アップの秘密

仮説検証の重要性は? ビジネスにおいて、仮説を立て検証することの重要性を実感しました。今回の学びでは、ひとつの仮説だけでなく、複数の仮説を立案し、その中から最も有効なものを選ぶプロセスが、偏りのない分析につながることを理解できました。また、3C分析や4P分析の演習を通して、具体的な仮説の立て方を練習する良い機会となりました。 経験の反応をどう見る? これまでにも仮説を提示した経験はありましたが、過去の経験では「それはあくまであなたの考えに過ぎない」という反応を受けたため、仮説自体の有効性に疑問を持っていました。これは、プレゼン相手の反応や自身の検証不足が原因と考えています。今後は、仮説を立てた後の検証作業にも、より一層力を入れて取り組んでいきたいと思います。 3C分析の効果は? さらに、実務において3C分析を用いた経験から、このフレームワークが多くの人を説得するために非常に効果的であると感じています。近い将来も、売上情報の分析にフレームワークを活用し、より多くの方に迅速に納得いただける方法を模索していきたいと考えています。

データ・アナリティクス入門

データ分析を変える前に目的確認の力

データ分析の目的すり合わせとは? 講義内のグループワークでは、上司と部下の間でデータ分析の目的をしっかりとすり合わせる重要性についての議論が特に印象的でした。コミュニケーションが一方通行になっていないか、それぞれの思い込みをそのままにしていないか、データ分析に入る前に行うべきことがあると再認識しました。 目的の共有で生まれた変化は? そこで、「データ分析前の目的のすり合わせ」を意識し、今週の業務に取り入れてみました。業務内容としてはデータの取り扱いが簡単なものであっても、その目的を明確に部下に説明すると、彼らの表情が明るくなり、納得感が増したように思います。 データの共有は次にどう活かす? 日々の業務は多種多様なデータの取り扱いの連続です。目的やデータの見方について、社内で共通の認識が確立している場合もあれば、単にデータをまとめて共有するだけで次のアクションにつながらない場合もあることに気づきました。今後は社内でグラウンドデザインの共有を進め、各種データの目的やKPIとしての活用方法について議論を深めていきたいと思います。

クリティカルシンキング入門

MECE活用でビジネスアイデアを整理する技術

視点の違いをどう活かす? 視点の違いや切り分け方によって、様々な考え方が存在することを理解しました。特に、他の方からの意見で、視点を効率的に切り出す手法を学んだことは非常に参考になりました。これは、私が得意ではないMECEに基づく情報の洗い出しに役立つ効果的な方法であり、大変勉強になりました。 事業企画における情報整理の要点 事業企画においては、ソリューションの提供価値を考える際、誰のどの課題を解決するのかという情報整理を論理的に行うことが重要だと考えています。また、意見交換を通じて、これらの情報が事実に基づいていることの重要性を再認識させられました。また、情報収集の際に実際に現場を訪れることの重要性も感じました。 MECEでの考察がなぜ重要? 現在検討中の事業企画のソリューションが、誰にとってのどの課題を解決するのかを、順序立ててMECEに考えようと思います。そして、一度立ち返って、自分が検討している事業分野全体の課題や提供価値をMECEに考察し、本当にこのソリューションが必要なのかを改めて見直していきたいと思います。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

「活用 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right