データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

クリティカルシンキング入門

業務に生かす学びの再発見

業務にどう活かす? 学んだ内容を自身の業務にどう生かすか、真剣に考えるための良い機会となりました。今回の復習を通じて、常に自分自身に問いを投げかけ、この方法や考え方が正しいのかを自問自答する癖を身につけたいと考えています。 提案はどう見直す? また、提案にあたっては、提供価値が適切に整理され、相手の立場からもベストな提案や回答になっているかを意識するよう努めたいと思います。知識はあるものの、業務に落とし込みきれていない同僚も多い中で、私自身が第三者の視点から客観的な指摘を行う役割を担うことも大切だと感じました。 習得はなぜ重要? 総復習の機会を通じ、日常的に学んだことをしっかりと身につけることが重要であると再認識しました。自分なりのフレームワークを確立し、それを業務に定着させる習慣をつけることで、さらなる成長を目指していきたいと思います。

クリティカルシンキング入門

ピラミッドストラクチャーで伝え方が劇的に改善

情報を正確に伝えるには? 日本語を使って他者に正確な情報を伝えるためには、順序や区切り方が重要だと感じました。特にピラミッドストラクチャーを用いると、結論に対してなぜそうなのかを分かりやすく説明でき、説得力が増すことがわかりました。 ピラミッドストラクチャーの活用例 例えば、以下のようなシーンで役立ちます。 - スタッフに技術指導や説明をする時 - お客様に商品説明をする時 - 取引先に提案をする時 - 求職者に自社の魅力を伝える時 日常会話に必要な意識は? 普段の会話でも、主語と述語を意識して話すことで、相手に伝わりやすくなります。また、話の組み立てとして「結論→理由付け」というフレームワークを意識することにしました。このフレームワークを実践しながら、言葉のボキャブラリーを増やし、より相手に伝わる表現を身につけていきたいと思います。

クリティカルシンキング入門

数字に惑わされぬ視点の磨き方

なぜ数値に固執する? 数字を分析する際、自分の仮説を証明しようと特定の数値にこだわってしまい、少しの分析で思考が止まってしまう癖に気づきました。本来、数字は客観的なデータとして取り扱い、そこから見えてくる問題の本質をファクトとして捉え、その後に物事を考えるステップを踏むことが重要だと感じています。 採用で見落とすポイントは? 採用業務においては、応募数、書類選考、面接通過、内定承諾といった時系列データを元に、過去の数値と比較しながら問題点や成功点を見極める必要があります。しかし、これらの数値だけでは、表面上は問題がなさそうに見える場合でも、実際には採用候補者の属性や自社の面接体制など、より詳細な要素に目を向ける必要があると痛感しました。こうした観点で情報を整理していくことで、よりクリティカルな問題解決に結びつく可能性が高まると考えています。

データ・アナリティクス入門

なぜ?と問い続ける現場改善の鍵

なぜ根本原因を追究? 課題解決にあたって、「なぜ?」と問い続けることにより、真の原因にたどり着けるという学びを改めて実感しました。表面的な数字だけに頼るのではなく、深く掘り下げることで問題の核心が明らかになり、解決までのスピードが大きく変わることを感じています。 数字だけで把握できる? 生産ラインの稼働率については、数字だけでは原因を十分に把握できない点が問題でした。そこで、MECEの考え方を取り入れ、品種別や曜日別といった多角的な視点から分析することで、従来は見落とされがちだった問題点を浮き彫りにできると考えています。 どうやって協力体制を作る? このような分析手法をもとに、自身の意見を整理して製造現場に提案し、全員で協力して稼働率向上を図りたいと思います。より具体的な視点で原因に迫ることで、現場全体の改善へと繋げていきたいです。

データ・アナリティクス入門

数字を味方にする学びの第一歩

数字の意味は? 数字自体は難解なものではなく、まずは苦手意識を払拭することが第一歩だと感じています。分析という行為は、なぜそのような結果になったのか、どのポイントからその結論に至ったのかを明快に説明し、他者を説得するための有力な材料になるからです。 どのように慣れる? そのため、初めは身近な数字に触れ、慣れ親しむことが大切だと考えています。次第にビッグデータを扱いながら、実践的な分析スキルを磨き、根拠となる資料を用いた分析を行っていきたいと思います。誰が見ても理解しやすく、納得できる説明ができるように心がけることが目標です。 偏らず分析するには? また、捉える数字を正確に把握するためには、一面的な見方に偏らず、あらゆる角度から分析する姿勢が重要だと実感しています。これにより、より具体的で説得力のある分析が実現できると信じています。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

戦略思考入門

本質を捉える学びで効率的な目標達成へ

本質を見極めるには? 物事の本質をしっかり見極め、目標を効果的に達成するためには、大局的な視点で情報をバランスよく収集し、分析して考えることが重要だと学びました。特に目の前にいる顧客の言葉をそのまま受け取るのではなく、なぜそのニーズが生まれたのか、その背景や取り巻く環境の変化を考慮することが大切です。そして、全ての整合を取るのは難しいため、自分なりの判断軸や基準が必要です。 最短で目標を達成する方法は? 現在担当しているプロジェクトや組織マネージメントにおいて、最も効果的に目的を達成するために、論理的に考え、可能な限り最速・最短距離での到達を意識したいと思います。本質的なゴールを設定し、優先順位を決めたうえで逆算しながらプロセスを描くことで無駄を省きます。進行中は、様々な試行錯誤をし、臨機応変に軌道修正をしながら進めていきます。

クリティカルシンキング入門

イシューに立ち返る瞬間

なぜイシューが大切? 論点をずらさないためには、まずイシューの特定が重要であり、そのイシューをより具体的な行動に落とし込むことが大切だと学びました。また、イシューは単に追い続けるのではなく、定期的に立ち返ってその方向性が間違っていないかを確認する必要があると感じています。 目的をどう守る? 自身が主体となる打ち合わせの中で、本来の目的を見失い、会話がだらだらと続くことがしばしばあるため、そのような状況に陥る前にイシューに立ち返り、本来の目的を果たせるようにコントロールしていきたいと思います。 問いをどう活かす? まずは、イシューを設定することから始め、その問いを基に報告資料や提案資料の作成に取り組んでいこうと考えています。同様に、他者が作成した資料に対しても、これらの視点を意識してチェックしていきたいと思います。

クリティカルシンキング入門

日々の反省が育む未来戦略

なぜ毎日の反復が必要? クリシンを実践するためには、日々の繰り返しが欠かせないと改めて感じました。特に、「考える前に考える」姿勢を意識することで、自分の思考の癖を認識し、楽な方向へ流れてしまわないように心がけることが大切だと思います。 どう戦略的に考える? また、戦略的に考え、現状や未来に向けた施策を検討するために、適切に分解し、様々な観点から数値を分析して仮説を持つことが重要です。このプロセスを繰り返し続けることで、着実な成長が見込めると感じています。 どう差別化を図る? そして、AIの存在がある現代では、自分たちのコンテンツをどのように差別化するかが大きな勝負どころだと思います。まずは現状を把握し、将来に向けた戦略を立てることから始め、取れる施策について仮説を持ちながら振り返るフィードバックを重ねていきたいです。

戦略思考入門

声がぶつかる選択の岐路

なぜ選択肢を排除するの? 捨てる選択肢を持たない必要性を改めて実感しました。現在、役所の窓口サービスの改善に取り組む中で、現場の意見と幹部層の意向が大きく異なっています。 どうして意見が分かれるの? 現場では、サービスの提供過多が職員の負担増や来庁者の待ち時間増加につながるため、業務量の削減を望んでいます。一方、幹部層はサービスの質を維持することを重視し、業務量を減らさない方針です。両者の主張にはそれぞれ理由があり、両立は難しいと感じています。 どの解決策が最適? このような状況を踏まえ、どちらを選ぶべきか、また住民にとって最も有益なサービスとは何かという理想像を明確にする必要があります。そのためにも、理想を実現する根拠やデータを集め、双方が納得できる落とし所を見つけながら調整を進めていきたいと考えています。

データ・アナリティクス入門

仮説で広がる学びの未来

仮説思考はなぜ重要? データ分析において仮説思考が重要であると実感しました。しかし、まだ完全に身についていないため、今後の業務の中で積極的に意識し、訓練していく必要があると感じています。理解したつもりでも、実際に言葉にして表現する際には苦労することもありました。 経験則から何が変わる? 今回の学びを生かし、所属する部門で担当している市場動向や契約に関するデータの収集と分析に、従来の経験則に基づく判断から仮説思考に基づいた立案へとシフトしていきたいと考えています。 言語化はどうする? さらに、言語化の訓練を重ねることで、仕事はもちろん日常生活においても仮説思考プロセスを意識して課題に取り組む習慣を身につけたいと思います。そして、適切な結論を導き出すために、さまざまなフレームワークや手法の活用を習慣化していく所存です。

「なぜ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right