リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

クリティカルシンキング入門

データ分析で見つける戦略のヒント

分析の切り口は? データ分析において、「加工の仕方」「分け方の工夫」「複数の切り口で分ける」という3つのポイントが重要です。分析の結果として何も見えない場合でも、それは失敗ではなく、他の切り口に原因の手がかりがあることを示していると感じました。迷って時間を浪費するよりも、実際に手を動かすことで何かを見つけ出せることがある、という点も非常に心に残りました。また、「MECE」(漏れなくダブりなく)で物事を解析するときには、まず「全体を定義する」ことが重要です。この点についても大きな学びがありました。「漏れなく」という作業がとても大変だと思っていましたが、全体を定義することで範囲を限定できるという考え方に納得しました。 課題はどう解決? 次期中期経営計画で示された経営課題を解決するために、自部門の責任と役割を整理する際にこの考え方を活用したいと思っています。自部門の現状を分析し、その結果に基づいて短期的および中長期的な戦略や戦術を検討します。まず、雑多な業務を抱える自部門を大きく分類し、それぞれを1つの「全体」と捉えて、「MECE」により分析と戦略の検討をしてみたいと考えています。 実行への一歩は? 今進めている、来期の事業計画策定に向けた自部門の現状分析や戦略立案においても、「MECE」を用いた「プロセス分解」を試してみようと思います。特にWEEK2で学んだ重要なポイントを整理して書き留め、繰り返し確認しながら実行に移そうと考えています。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

デザイン思考入門

共感で磨く顧客ヒアリング術

顧客課題整理は? 「顧客課題仮説」では、ユーザー、状況、課題、ソリューションをそれぞれ具体的に整理することで、単なるぼんやりした仮定ではなく、明確な言葉に落とし込むことができました。この手法により、経営者や従業員、支援者が共通のイメージを持ちやすくなったと感じます。 ヒアリングの進み具合は? 実際に経営者を対象に実践した際、項目ごとに整理されていることで、ヒアリングがスムーズに進み、受け入れやすい結果となりました。一方、ある飲食店の場合は、オーナーだけでなく、実情を把握している店長やホール担当へのヒアリングを次回実施することとなりました。もし項目化がなされていなかったなら、経営者の感覚だけでヒアリングが終わっていた可能性があります。 ユーザー深堀りは本当か? また、別の企業では、対象ユーザーが十分に深堀りされず、ニーズが曖昧な状況でしたが、今回の見直しを通じて、改めてユーザーの気持ちや共感を確認する機会となりました。順序は多少前後したものの、最終的にはユーザーの感情を基に課題を再検討することにしました。 共感が導く検討プロセスは? このプロセスでは、共感を出発点として課題を定義することが重視されました。基本的には決められた順序で進むのが望ましいものの、行きつ戻りつの中で課題を固めることも重要であり、仮に具体的なアクションに移していたとしても、ユーザーの共感が揺らいでいる場合は、再度立ち返って検討する必要があると感じました。

データ・アナリティクス入門

正しい問いが導く解決の鍵

何が問題と捉える? 問題解決のプロセスには、まず「何が問題か(WHAT)」を明確にすることが基本であり、その後に課題の位置(WHERE)や発生原因(WHY)、そして具体的な対策(HOW)を検討する流れがあると学びました。 本質はどう捉える? 普段、私は問題が起こるとすぐに「どのように対応するか(HOW)」を考えてしまいがちです。しかし、本質的な解決策を導くためには、まず問題自体を正確に捉えることが重要だと実感しました。その際、基本となる「比較」を行うことで、どの部分に大きなギャップがあるかを見極めやすくなります。 経営結果の謎は? また、年次の経営結果を分析する際も、まず何が問題なのかを探ることが肝心です。例えば、利益が上がらない原因が売上の減少にあるのか、費用の増加によるものなのかを明確にし、どのカテゴリー、どの購買層、またはどの部門に起因しているのかを整理することが求められます。そして、その整理された課題に対してどのような対策を講じるかを段階的に考えていくことが大切です。 問いの作り方は? 最も難しいと感じたのは、問題そのものを見つけ出すための適切な問いを立てることです。正確な問いがあれば、フレームワークに沿って段階的に解決策を導き出すイメージが湧きます。しかし、感度の高い問いが立てられなければ、効果的なロジックツリーを作成することも困難になります。今後は、この問いを立てるコツをより一層習得していきたいと感じました。

デザイン思考入門

共感から生まれる深い問いの力

なぜグループにまとめ? 仕事でお客様の会社において、事業部、部門、部署、チーム、そして個人といった多様な単位でヒアリングを実施しています。各単位で個別に課題を抽出し解決策を検討するというよりも、各々の課題をコーディングし、小グループとしてまとめる手法に取り組みました。その結果、企業全体のインサイトがより明確になったと感じています。同じ課題であっても、観る角度や背景が異なるため、捉え方に違いが生じることを実感しました。 どう問いを工夫する? また、ヒアリングやアンケートで得られたキーワードや文章をコーディングする際には、自身の考えや先入観を持ち込まないよう注意しています。適切な問いの立て方が非常に重要で、オープンクエッションを用い「WHY」を投げかけることで、目先の要求だけでなく、根底にある不自由さや真の要求を引き出すことが可能となります。問いを設定する前に、事前調査や自身の体験を通じた共感を得ることで、相手の立場に立った一歩踏み込んだ質問ができると感じました。 なぜ共感が大切? 事前調査や経験による共感、そしてその共感に基づく一歩踏み込んだ問い、さらにヒアリングやアンケート調査で得た定性的な結果のコーディングを通して、課題とインサイトを明確化するプロセスは、相互に連携して作用しています。深い共感があれば、より深い問いが実現し、結果としてユーザーや生活者の深層心理を引き出し、課題とインサイトの発見へと結び付くと実感しています。

データ・アナリティクス入門

仮説で切り拓く学びの軌跡

仮説の基本的な意味は? 仮説とは、ある論点に対する一時的な答えを意味します。仮説を立てることで、説得力が向上したり、日々の課題に対する意識が高まったり、業務のスピードアップにもつながります。仮説には、結論に向けたものと、問題解決のための「どこで」「なぜ」「どうやって」といったステップに基づくものがあります。また、時間の経過により仮説の内容が変化することも考えられます。 仮説検証はどう進む? 仮説を構築する際には、まず複数の仮説を立て、各仮説が網羅的であるかを確認することが重要です。思いつきや直感、単一の数字だけで決めつけず、様々な切り口やフレームワーク(たとえば4Pなど)を用いて検証することが求められます。さらに、必要なデータが何か、どこにあるかを探りながら、証明可能なデータやアンケート、インタビューなどを通じて仮説を補強することも一つの手段です。 過去経験はどう活かす? これまでの経験や目の前の数値だけに頼る傾向がありましたが、初めに様々な可能性を洗い出しておくことで、全体のスピードアップや説得力が大幅に向上することを実感しました。また、3Cや4Pといったフレームワークは、実際の業務でどのような視点で分析を進めるべきかを検討する上で有効であると理解できました。調査依頼を受けた際には、目的に応じた適切な指標を考え、複数の仮説を立てることで、分析の軸を明確にし、必要なデータの所在を把握していくことが大切だと感じています。

データ・アナリティクス入門

ギャップに気づく未来への一歩

どのようにギャップ認識? 問題解決のプロセスについて学んだことで、現状と理想(あるべき姿、ありたい姿)のギャップを明確に把握する重要性を実感しました。現状が理想に達していない場合はまず「あるべき姿」を定め、さらに改善を目指す際には「ありたい姿」を設定するという考え方は、今後の業務に大いに役立つと感じています。 どう分類を柔軟に? また、ギャップを特定する際には、MECE(漏れなく、ダブりなく)を意識することが推奨される一方で、状況に応じて「その他」の分類も柔軟に取り入れることが大切だと学びました。単なる分類に終始するのではなく、実際に意味のある分別ができるよう努める必要があると考えます。 何故課題整理が必要? この学びは、データ分析の課題設定において非常に有効です。分析に取り組む前に、まず現状と理想のギャップを整理することで、的確な課題設定と見落としの防止が図れます。さらに、他の人が設定した課題についても、自分なりの視点で再考し、改善点を見つける習慣を身につけることが重要だと感じました。 どのような目標管理? 実際の業務だけでなく、目標設定やソフトウェア導入の検討プロセスにも応用できるこのスキルは、定期的な進捗確認や必要な修正を行うことで、最適な状態を維持するのに役立ちます。自分で設定する課題や目標だけでなく、チーム全体で意見を共有し、ディスカッションすることで、より本質的な問題解決へとつながると期待しています。

デザイン思考入門

SCAMPERで広がる発想の扉

SCAMPER法で視野拡大? 自社では、これまでECRS法を用いて業務改善策を整理してきましたが、SCAMPER法を学ぶことで視野が大きく広がりました。特に、代用、応用、修正、転用という新しい観点は、従来の枠にとらわれないアイデア発想を促してくれます。今後は、さまざまな業種や業態の手法も参考にしながら、効率化につながる何かを見出せればと考えています。 不確実な依頼は? 一方で、我がチームには業務依頼の不確実性と即時対応が求められるという課題があります。具体的には、受付業務や短納期案件に対応する必要があるため、依頼のタイミングが明確でなく、迅速な対応が求められます。受付業務については、飲食店などで用いられている端末オーダーの導入が応用できないかと検討中です。また、短納期案件に対しては、工場における生産管理の手法を案件管理や工程管理に役立てられないかと考えています。これらの点については、チームメンバーの意見も積極的に取り入れていく予定です。 アイデア整理の秘訣は? また、個人の発想には限界があるため、知恵を集めて検討するアプローチが理にかなっていると感じています。MECEなアイデアを創出するためにはSCAMPER法といったフレームワークが有効であり、アイデアの整理にはKJ法なども取り入れるとよいでしょう。さらに、アイデアを出す際には、誰に何を届けるのかという核となる部分を明確にすることが重要だと考えています。

クリティカルシンキング入門

イシュー特定で深掘り!問題解決の新発見

問いをどう分解する? 課題に取り組む際、まず問いを立て、それを分解してイシューを特定することが重要です。これまで、表面的な課題に対して安易に打ち手を検討していたと反省し、改めて課題を分解し、イシューを特定するプロセスに取り組みたいと思います。分解の際は、MECE(モレなくダブりなく)であることや、データの加工によって新たな気づきが得られるかを吟味しながら進めることが求められます。このステップを徹底することで、安易な解決策に頼ることなく、より効果的なアプローチが可能となります。 問題の本質は何? 問題が発生したとき、すぐに施策に飛びつくのではなく、まず問いを立てて、それを分解してイシューを特定するプロセスを意識的に取り入れることが大切です。個人的には、実際に手を動かしながらアナログで書くことで課題を可視化する方が効果的だと感じています。それに際しては、MECEであるかどうかを確認し、他メンバーの力を借りて精度を高めることも重要です。 解決策はどう見極める? 問題が表面化した際には、安易に解決策を模索するのではなく、自分でロジックツリーを書いてみることが推奨されます。必要に応じてデータを確認し、イシューを特定することで、より根本的な課題を明らかにします。そのイシューは周囲と共有し、欠けや漏れがないかアドバイスを求め、さらに経営層にも報告してフィードバックを得ることで、より精度の高い解決策を導き出すことができるでしょう。

データ・アナリティクス入門

仮説から実践へ!学びの秘訣

仮説はどう考える? 原因の仮説を考える際、まずは思考を広げた後、いくつかの軸に沿って収束させるという対概念の活用方法を学びました。問題にかかわりがありそうな要素だけでなく、その他の要因も広く挙げることの重要性を再確認しました。 解決策は何で選ぶ? 次に、解決策を検討する際には、選定基準と選択肢をセットで整理することが大切であると感じました。どの軸で絞り込むかをイメージしながら、具体的な解決策の検討プロセスを意識することが、より充実した議論につながると学びました。 集客課題はなぜ? また、社内で実施する勉強会や発表において、集客面で予想を下回るケースが多い現状を振り返り、テーマや内容、告知文に加え、スケジュールや運営、形式といった運用面での見直しの必要性も感じました。 外部連携はどう? さらに、外部リソースの活用にあたっては、パートナー企業の選定が有効な解決策となる場面もあります。解決策のリストアップや選定基準の設計において、この方法が実際に役立つと実感しています。 意見はどう生かす? 最後に、Q2に記載されている二点については、必要なタイミングで適用しています。普段から基準と選択肢をセットで考え、クライアントへの説明に活かしているものの、社内に閉じた課題の解決策検討では見落としがちな部分もありました。自分が見えていない課題や第三者の意見を取り入れることにも、今後積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

初心者でも使える問題解決フレームワーク

実践で感じた課題とは? あるべき姿と現状を比較することを心がけてきたが、いざ実施しようとするとできていないと感じることがあります。そのため、まずはWhat(問題を定める)を意識することが重要だと感じています。課題を考える際は、マーケティングの課題なのか、人材の課題なのかといったように、区分分けをすることが有効です。 ロジックツリーは効果的? 数字はロジックツリーのように因数分解することで、どの要素がどのように貢献しているのか(正負を含めて)を把握できることを初めて知り、これはぜひ身に着けたい知識です。 現状把握と意識共有の方法 まずは状態を確認し、たとえ当たり前のことでも言語化することで現状を把握し、チームでの共通認識を持つことが大切です。その後、原因となる事象を特定し、解決策の検討に進みます。ユーザアンケートをデザインする際には、仮説をもって因数分解ができるように、クロス集計も意識します。 新人教育でのロジックツリーの活用 新人教育ではロジックツリーやMECEを活用して、アンケートデザインにおける考え方の方針をチームで共有し、どんな分析ができるのか、また何をしたいのかを実際に仮レポートを作成してみることも大切です。 フレームワークの選択と目標 あるべき姿と現状を整理するために、優れたフレームワークを見つけ、それを習得することが目標です。また、教えられるように資料に整理することも心がけていきます。

「課題 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right